Active Learning for Exploring Resonance Diagrams ## Context: - Facility for Antiproton and Ion Research (FAIR): wide variety of beam types - synchrotrons: operate at space-charge limit - goal: identify optimal settings for machine and predict maximum tolerable intensity - problem: computationally costly simulations for 1 sec storage time (160'000 turns) - ✓ 1st step: PIC space charge (\approx weeks) \implies effective models (\approx hours) for SIS100 [1]¹ - 🗞 2nd step: smart parameter sampling - X 3rd step: predict for ≈ 10 parameters Figure: 2'500 simulations per resonance tune diagram First results with uncertainty-aware deep active learning for exponentially nonlinear vertical FFA machines [2]²: ^{1[1]} Oeftiger et al. 2022, Phys.Rev.Accel.Beams 25, 054402 / $^{^{2}}$ [2] Oeftiger et al. 2023, IPAC'23 Proceedings \angle