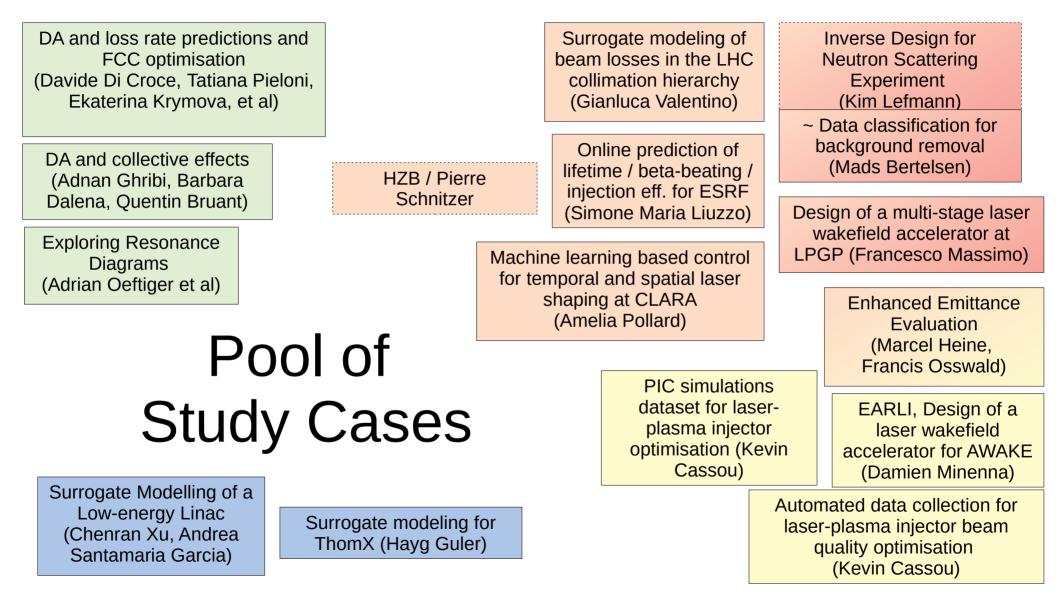
Summary WG3 Data Generation & Simulations

WG Members

19 members present on workshop:


- Adrian Oeftiger (GSI/FAIR)
- Adnan Ghribi (CEA/CNRS)
- Amelia Pollard (ASTEC/STFC)
- Andrea Santamaria Garcia (KIT)
- Barbara Dalena (CEA/IRFU)
- Chenran Xu (KIT)
- Damien Minenna (CNRS)
- Davide Di Croce (EPFL)
- Francesco Massimo (UPS)
- Francis Osswald (CNRS/IPHC)

Topics covered:

- Accelerator physics
- Accelerator technology
- Linacs / Rings

- Gianluca Valentino (UM)
- Hayg Guler (CNRS/IJCLab)
- Kevin Cassou (CNRS)
- Mads Bertelsen (ESS)
- Marcel Heine (CNRS/IPHC)
- Pierre Schnizer (HZB)
- Simon Hirlaender (PLUS)
- Simone Liuzzo (ESRF)
- Thomas Kachelhoffer (CCIN2P3)

- Hadron beams / light sources
- Plasma WF accelerators
- Neutron scattering

White Paper to Shape Ideas

- Data: bottom-up strategy for WG
 - Compare data management solutions: existing repos, EOSC projects (e.g. ESCAPE DIOS/OSSR)
 - Build on existing infrastructure and devise data publication workflow
- Pool: 14 study cases (+1)
- Investigate methods for active learning (=iterative supervised learning)
- Finalise & publish ~October '23

Adrian OEFTIGER, GSI, Germany Gianluca VALENTINO, University of Malta, Malta Francis OSSWALD, IPHC, CNRS, France Andrea Santamaria Garcia, KIT, Germany Chenran Xu, KIT, Germany Kevin Cassou, IJClab, CNRS/IN2P3, France

Deliverables

- Standardising data:
 - Data: models & structure
 - Standardisation of metadata
 - Strategise data publication workflow
- · Developed translation tool that curates and structures data
 - \rightarrow produce F.A.I.R. data (potentially published with DOI) to enable further data-driven processing
- Generated F.A.I.R. data sets
- Developed framework for simulations:
 - Input generation: clever parameter sampling ([uncertainty-aware] active learning algorithms)
 - Improve on grid search & random search!
 - Interpreter: input parameters \rightarrow simulation codes
 - Include translation tool (simulation code \rightarrow metadata compatible)
 - potentially: cluster job allocation management
 - potentially: exploit trained surrogate (with uncertainty measure) to re-use data/information

Approach

- Regular hackathon-style events, per event:
 - Prepare 1-3 study cases as boiled down projects
 - Implement active learning strategies, compare effectiveness/energy-efficiency
 - Generate data sets, compare data management / publication solutions
 - Develop standardised set of metadata

Impact

- #scientific publications / data catalogues
- #codes using the defined data standard
- Reduction of #data & speed-up factor required to reach conclusion in study
- Energy consumption & footprint (storage, computing)
- Geographical spread of (framework/data catalogue) end users
- Training/formation: #people and #data challenges (hackathon events)
- Knowledge transfer & validation across institutes
- Framework applicable to use cases in wider community (extensibility/plugins)

Draft Structure for WP (to be synced)

			ſ	Collecting inputs from the community for data/metadata standardisation				
	~	Data collection	Į	Data generation for surrogate models				
			l	Inkind Beam studies data)	Implementation	{	Implementation of the developed tool for data curation/structuration
				Industrial partnership/development			ι	Implementation of an interpreter layer to speed up tracking simulations
		Development of methods	{ {	Development of data curation and structuration methods		Dissemination	{	Publication of a community wide standard for data and metadata
				Exploration of methods for fast/frugal simulations				Publication of FAIR data catalogues
			í	Industrial partnership/development)	Training	{	Regular hackathon style envents
		Development of tools	{ {	Development of a tool for curation and data structuration	•	Industrial applications		
				Development of an interpreter layer to speed up tracking simulations		Coordination & Management		
٦		Prototyping/demonstrators	ſ	Prototyping of a tool for curation and data structuration) ()	Communication		
	$\left\{ \right.$		ι	Prototyping of an interpreter layer to speed up tracking simulations				

Data/Simulation working group workpackages and tasks breakdown

Resources

- FTE on data/metadata collection
- Long-term support of simulation-embedding framework (in-kind, FTE)
- FTE or industry partnership (e.g. software companies on MLops / DEVops)
- Beam time (in-kind)
- Infrastructure for data storage & computing
- Commitment from research infrastructure (data stewards/officers)
- statistics/ML experts (from universities/industry)

Next Steps

- Add workshop outcome to white paper
- Conclude on Tasks & roles of WG members
- Synchronise WP structure with other WGs
- Build industrial partnerships

Collected Expected Results

- Several methods of active learning / smart data exploration
- Online dynamic exploration of published results
- New tools to design (LWFA and classical accelerators, neutron scatt. exp.) front-to-end \Longrightarrow inverse design
- Interfacing tools between codes modelling different physics (at a given fidelity/precision)
- Data sets (to train AI & obtained surrogates during active learning)
- Surrogate models for large machines (present & future) \rightarrow with aim to embed in optimisation/classification problems
- Synthetic data for precise surrogate-optimisation purposes (data augmentation)
- Enhanced diagnostic (background removal)
- Implemented & shared framework managing (i) clever parameter generation, (ii) cluster job allocation, (iii) data postprocessing (implementing agreed data standards)
- Knowledge transfer & validation across institutes
- Metadata catalogue
- Have produced a F.A.I.R. & reused data set (citations of DOI, need to establish "impact factor of shared data")