

Anomaly detection

Annika Eichler with Lynda Boukela

The European X-ray Free Electron Laser (XFEL)

Quench detection: facts

- The EuXFEL is the largest accelerator for X-ray free electron laser generation in the world
 - Electron acceleration to high energies of up to 17.5 GeV
 - Several hundred users benefit from extremely intense laser every year
 - The Linac uses 800 of 1.3 GHz superconducting cavities

- Safe and optimal operation is crucial
 - Faulty events diagnosis
 - **Quenches** are a priority
 - Significant down-time (11 hours in 2022)
 - Facility degradation
 - Energy and financial losses

The European X-ray Free Electron Laser (XFEL)

Quench detection: ML-powered approach

- Currently, diagnosis through the QDS
 - **QL-based**, thresholding over the average of previous 100 pulses.
 - Robustness issue
- New AI-powered diagnosis
 - Residuals from the model
 - Statistical test for evaluation
 - Clustering (preprocessing, two similarity measures).

Electromagnetic dynamics

Residuals

Generalized likelihood ratio

 $\lambda_{\text{GLR}}(k) = \frac{K}{2} \left(\frac{1}{K} \sum_{i=k-K+1}^{k} r(i)^{\top} \right) \Sigma^{-1} \left(\frac{1}{K} \sum_{i=k-K+1}^{k} r(i) \right)$

The European X-ray Free Electron Laser (XFEL)

Quench detection: Performance

- Experimental evaluation
- Data from the second half of 2022 are analyzed
- The ML approach outperforms the current system
- Potential implementation on FPGA

Challenges:

- Beam information inclusion
- Long term diagnosis
- Constrained real-time DAQ
- Further distinction and understanding

A15. A16. A17. A18. A19.

PETRA IV BPM Faults

- Detection of faulty measurements.
- Detect before the next turn
- Status: at the very beginning
- Hardware: FPGA implementation.

Courtesy: H. Schlarb

In summary

We want

Applications

Needs (limitations of current methods, what is not working as desired) of the application>>Efficient and Robust quench detection, At-Edge detection of faulty BPM measurements, Machine safety, operation optimization, reduce false alarms Methods (to be tested and or that has been tested)>>Model based residuals+ classification based on a KNN model tested offline, ANN for BPM

Challenge/difficulties (what are the risks?) >> Bandwidth limitations, fast and

computationally-cheap solution (ideally FPGA), explainability, robustness (work for different operating points/energies)

Implementation (online/offline, what frequency,...) >> Online (9MHz), FPGA, prototype(BPM) Measures (how could you measure the success of the project)>>Downtime caused by fake quenches (Eq to time energy and money)

General aspects:

What you want to get out (your goals) >> standard solutions (portable, reusable, modular (flexible))

How could you envision to work together >> collaborations via co-supervision, visits, hackathons, articles

Thank you

DESY. | Anomaly Detection at DESY | CERN GENEVA 18/07/2023