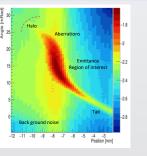
EU HORIZON2024-INFRATEC-01-01

Enhanced Emittance Evaluation

Marcel Heine, Francis Osswald


Objective: Enhanced beam quality evaluation

Improve rms-emittance calculation and increase tail and halo detection for injection channels @ Research Infrastructures Application to non-Gaussian beams, non-uniform distribution, multibody structure, noisy images, and high resolution scanners

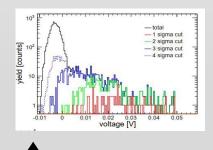
Domain

Low energy DC ion beams (injectors) 2D/4D transverse phase space distributions High resolution scanning/beam sampling

Data cleaning (S/N filtering) Contour reconstruction (deconvolution) Data base definition (interlab) Training (simulations+experiments) Pattern recognition, beam analysis, diagnosis Tests, consolidation, validation Implementation in users network (IN2P3)

Applications

Assistance for diagnosis of RI operation Control of beam losses S/N filtering (beam diagnostics) Increase of technological level of industry Image recognition in life science


Methods Data cleaning Anomaly detection Data generation from experiments and simulations Deep learning and CNN(?) Image recognition

Specific aspects

- Synergies with other SC and WG (1, 3, 4) Academic collaboration with data scientists
- Testing and validation with industry
- Knowledge transfer
- Student training

Risks Low S/N ratio Experimentation (resources) Benchmarking (models, criteria)

Innovation, new approach

References

Process

[1] Beam loss monitoring through emittance growth control and feedback with design, F. Osswald et al., IPAC 2023

https://doi.org/10.18429/JACoW-IPAC-23-TUPA082

[2] Challenges in low losses and large acceptance ion beam transport, arXiv:2303.06969 (2023)

[3] THE C70XP INJECTION LINE TRANSVERSE DISTRIBUTION STUDY AND IMPACT, T. Durand, IPAC 2023

[4] Transverse emittance measurement in 2D and 4D performed on a Low Energy Beam Transport line: benchmarking and data analysis, F. Osswald et al., JINST 18 P01011 (2023)

[5] Study of injection line of the cyclotron C70XP of ARRONAX, T. Durand et al., HIAT 2022, doi:10.18429/JACoW-HIAT2022-TUP14

[6] Installation, use and follow up of an emittance-meter at the ARRONAX cyclotron 70XP, F. Poirier et al., IPAC 2021

[7] Accelerators for the Future, 2020-2030 French Strategic Plan for Nuclear Physics, Particle Physics, Astroparticle Physics and associated Technologies & Applications, Report of the GT07

working group, 2020, https://prospectives2020.in2p3.fr/?page_id=313

[8] Transverse phase-space scanner developments at IPHC, F. Osswald et al., IBIC 2019

[9] M. P. Stockli et al. Emittance studies with an Allison scanner, RSI 77, 03B706 (2006)

AI

[1] Machine learning for beam dynamics studies at the CERN Large Hadron Collider, P. Arpaia et al., NIM A 985 (2021) 164652

[2] Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems, A. Edelen et al., PRAB 23, 044601 (2020)

[3] Opportunities in Machine Learning for Particle Accelerator, A. Edelen, arXiv: 1811.03172v1

Life science

[1] F. M. Jones et al. Processing citizen science-and machine-annotated time-lapse imagery for biologically meaningful metrics. Scientific data, 7(1), 102. (2020)
[2] B. G. Weinstein et al. A general deep learning model for bird detection in high-resolution airborne imagery. Ecological Applications, e2694. (2022)