Documentation

Paul Gessinger
CERN C\E/RW

2023-11-08 - ACTS Workshop Orsay 2023

Outline

® [ntroduction to our documentation
m Tutorial: building the documentation
® Authoring for the documentation

Paul Gessinger 2023-11-08 - ACTS Workshop Orsay 2023

Introduction

B Documentation in ACTS is
built with Sphinx

® C++ level code-documentation
is parsed using Doxygen

B Breathe bridges the two:
C++ constructs can be pulled
into Sphinx or cross-
referenced

® Deployed to Read the Docs
» Gives us easy multi-versioning
» PR hook allows previewing

documentation for changes

API Reference

public API

/ ACTS Common Tracking Software © Edit on GitHub

ACTS Common Tracking Software

ACTS i an experiment-independent toolkit for (charged) particle track reconstruction in (high
energy) physics experiments implemented in modern C++.

The ACTS project provides high-level track reconstruction modules that can be used for any
tracking detector. The tracking detector geometry description is optimized for efficient navigation
and fast extrapolation of tracks. Converters for several common geometry description packages are
available. In addition to the algorithmic code, this project also provides an event data model for the
description of track parameters and measurements.

Key features:

« Atracking geometry description which can be constructed manually or from TGeo and DD4hep
input.

« Simple event data model.

« Implementations of common algorithms for track propagation and fitting.

« Implementations of basic seed finding algorithms.

« Implementations of common vertexing algorithms.

* Getting started

« Tracking in a nutshell

* The ACTS project

« Core library

 Fast Track Simulation (Fatras)
« Plugins

« Examples

® Both: high-level conceptual documentation and technical detailed documentation

Paul Gessinger

Workshop Orsay 2023

https://www.sphinx-doc.org
https://www.doxygen.nl/
https://breathe.readthedocs.io/
https://readthedocs.org/

Peek into the docs

® High-level tracking introduction
m Core library documentation

B Documentation of the Examples
framework

B & How-to guides for Examples
workflows

® Contribution guide

Paul Gessinger

Getting started

Quick start

Acts is developed in C++ and is built using CMake . Building the core library requires a C++17
compatible compiler, Boost", and Eigen . The following commands will clone the repository,
configure, and build the core library:

$ git clone https://github.com/acts—-project/acts <source>
$ cmake -B <build> -S <source>
$ cmake --build <build>

Build options

CMake options can be set by adding -D<0PTION>=<VALUE> to the configuration command. The
following command would e.g. enable the unit tests

$ cmake -B <build> -S <source> -DACTS_BUILD_UNITTESTS=ON

Option Description

Build with most options enabled (except
ACTS_BUILD_EVERYTHING HepMC3 and documentation)
type: bool , default: oFf

Workshop Orsay 2023

Peek into the docs

B Getting started building the
ACTS

]
m Core library documentation

B Documentation of the Examples
framework

B & How-to guides for Examples
workflows

® Contribution guide

Paul Gessinger

Tracking in a nutshell

Track reconstruction is the process to recover the properties of a charged particle from a set of
measurements caused by the interaction with some form of sensitive detector. The goal is to find
which measurements are likely to have been caused by which particle, to group them accordingly,
and to estimate the associated trajectory. Such charged particle trajectories form the basic input to
the majority of higher-level reconstruction procedures in many cases.

E] Seeding

:.' Track finding

.
B

Track fitting

Fig. 1 lllustration of a track reconstruction chain starting from spacepoints to fully formed tracks.
This section provides a high-level view of a track reconstruction chain, and is largely based on Tt

gives an overview of the basic building blocks conceptually, and also connects these building blocks
with the concrete implementations in the core ACTS library, where available.

Charged particle detection

kshop Orsay 2023

Peek into the docs

B Getting started building the
ACTS

® High-level tracking introduction
[

B Documentation of the Examples
framework

B & How-to guides for Examples

Core library

The Acts core functionality is grouped into modules, where each module contains tools related to
one particular subject, i.e. experiment geometry or vertexing.

o Algebra definitions

* Unit definitions and conversions
* Event data

e Geometry module

* Material

* Propagation and extrapolation

* Magnetic field

* Track reconstruction
 Visualization

* Miscellaneous

* How-to guides for Core components

workflows
® Contribution guide

Paul Gessinger 2023-11-08 -

Workshop Orsay 2023

Peek into the docs

B Getting started building the
ACTS

® High-level tracking introduction
m Core library documentation
]

B & How-to guides for Examples

workflows
® Contribution guide

Paul Gessinger

Examples

ACTS ships with a comprehensive set of examples. These examples leverage a custom event-
processing framework, that is expressly not intended to be used in any kind of production
environment. These examples demonstrate how to set up and configure different components in
the ACTS library to assemble a track reconstruction chain.

At the time of writing, there are two aspects to the ACTS examples:

1. Example executables for different purposes. This is the original form of examples provided by
ACTS. A large number of separate executables are be built if -DACTS_BUILD_EXAMPLES=ON , the
exact set is also influenced by which plugins are enabled in the build. These executables are
configured by a number of command line options, for example to set the number of events to be
processed, or which output formats to read from / write to.

. Standalone Performance and Analysis applications based on ROOT. These applications are built

on top of the ROOT based output writers of the Examples folder, they comprise of track

reconstruction performance validation and material validation code.

Python bindings for the various components of the examples. These bindings allow more

flexible combination of the example components into scripts, and can overcome the complexity

of the large number of executables and command line options. The idea is that these scripts will
serve as true examples, where modifications to the actual python code will be easy, and
encouraged.

N

w

Workshop Orsay 2023

Peek into the docs
How-to guides for the Examples

e Add a new algorithm

B Getting started building the « Analysis applications
e Howto run the material mapping and validation

ACTS e ACTS Tutorial on Auto-Tuning in CombinatorialKalmanFilter (CKF)
[ngh_level tl’aCkIng IntrOdUCtlon * Generate a configuration file for the smearing digitizer
m Core library documentation
B Documentation of the Examples

framework
|
® Contribution guide

Paul Gessinger 2023-11-08 - ACTS Workshop Orsay 2023

Peek into the docs

Getting started building the
ACTS

High-level tracking introduction
Core library documentation

Documentation of the Examples
framework

& How-to guides for Examples
workflows

Paul Gessinger

Contribution guidelines

o Contribution guidelines

* Source code formatting

¢ How do | build the documentation?

o Documentation Markdown Cheatsheet
o What is clang-tidy?

o What is physmon?

¢ What are ROOT hash checks?

¢ How to make a release

o Profiling

o Style guide

2023-11-08 - ACTS Workshop Orsay 2023

Building the documentation

Building the documentation

The documentation uses Doxygen™ to extract the source code documentation and Sphinx™ with
the Breathe™ extension to generate the documentation website. To build the documentation

locally, you need to have Doxygen™ version 1.9.5 or newer installed. Sphinx® and afew att=" -
dependencies can be installed using the Python package manager, pia = = * -

Building the documentation {

| ©
fm e documen’ted

Actua\\\], his 1S Y.

am==" s

= = TtTs strongly recommended to use a virtual environment™ for this purpose! For example, run

$ python -m venv docvenv
$ source docvenv/bin/activate

to create a local virtual environment, and then run the pip command above.

Paul Gessinger

2023-11-08 - ACTS Workshop Orsay 2023

Building the documentation

® Doxygen > 1.9.5
B Sphinx and dependencies using pip :

$ pip install -r docs/requirements.txt

m 3 Always use a virtual environment! @

1. Configure the project
$ cmake -B <build> -S <source> -DACTS_BUILD_DOCS=on

2. Runthe docs command

$ cmake --build <build> --target docs

B Tip: to view the documentation, you can start a local web-server in python using
$ python -m http.server -d <source>/docs/_build/html

Paul Gessinger 2023-11-08 - ACTS Workshop Orsay 2023

Authoring documentation

B Sphinx natively uses
reStructuredText for authoring
» Very powerful but cumbersome

B Our documentation supports Markdown
for authoring using MyST

B Recommendation is to use Markdown
whenever possible
® Documentation is a hierarchy using
nested toctree s
» New pages need to be linked in toctree
to show up
» core/core is an example of a nested
toctree

Paul Gessinger

2023-11-08 - ACTS Workshop Orsay 2023

Example: docs/index.rst

. toctree::
:maxdepth: 1

getting_started

tracking

acts_project

core/core

Fast Track Simulation (Fatras) <fatras/fatras>
plugins/plugins

examples/examples

Contribution guide <contribution/contribution>
api/api

versioning
formats/formats
codeguide
authors

license

O rST syntax

https://myst-parser.readthedocs.io/en/latest/live-preview.html

Authoring (MyST specific syntax)

(segmentation)=

:::{figure} /figures/tracking/segmentation.svg
:align: center

:width: 400px

Illustration of a one-dimensional (a) and

a two-dimensional segmentation (b) of a
silicon sensor.

Silicon sensors are usually segmented in
one dimension (*strips*) or in two dimensions
(#pizels*) (see {numref} segmentation”).

B ::: starts a directive, figure isthe
directive name
» :width: are parameters to the directive
» Test is given a content to the directive

B (segmentation)= adds an explicit
anchor

Paul Gessinger 23-11-08 TS Workshop Orsay 2023

—— 1

(a) strip (b) pixel
Fig. 2 lllustration of a one-di | (a) and a two-di ional ion (b) of a
silicon sensor.

A very common electronic detection approach is the use of semiconducting particle
detectors, often made of silicon. When a charged particle traverses such a sensor, it
ionizes the material in the depletion zone, caused by the interface of two different
semiconducting materials. The result are pairs of opposite charges. These charge pairs
are separated by an electric field and drift toward the electrodes. At this point, an
electric signal is created which can be amplified and read out. By means of
segmentation, the measured signal can be associated with a location on the sensor.
Silicon sensors are usually segmented in one dimension (strips) or in two dimensions
(pixels) (see Fig. 2).

B {numref} segmentation” is a role
» This adds a numbered cross-reference!

Authoring: anchors

(track-par-section)= ® Anchors also work on headlines

Track parametrization

[Go to track parametrization] (#track-par-section) % <- explicit anchor, explicit title
[]1 (#track-par-section) % <- explicit anchor, automatic title
[Go to track parametrization] (#track-parametrization) % <- implicit anchor

Track parametrization
Go to track parametrization
Track parametrization

Go to track parametrization

B Recommendation: use explicit anchors whenever possible
B Can use explicit title or automatic title

Paul Gessinger 2023-11-08 - ACTS Workshop Orsay 2023

Authoring equations

. s * ___ Aside from the nominal quantities captured in Z, the related uncertainties and correlations need to
\bzg:n{equatlon } ThlS WOI’kS in Markdown! be taken into account as well. They can be expressed asa 5 x 5 covariance matrix like
e kil e e
\sigma~2(1_0)& \text{cov}(1_.0,1_1) c=| . : o%(9) cov(4,6) cov(da/p)
& \text{cov}(1_0, \phi) : : : o) eovib.alp)
& \text{cov}(1_0, \theta) & \text{cov}(1_0, gq/p) \\ o ‘ T
- & \sigma"2(1_1) & \text{cov}(1_1, \phi) e e s s L e
& \text{cov}(1_1, \theta) & \text{cov}(1_1, q/p) \\ uncertainies associated with the loca positon,as well a the momentum direction are ndicated in
) & . & \sigma’\Q(\phi) & \text{cov}(\phi’\theta) Fig. 3 (a) as an ellipse and a cone around the momentum vector 7, respectively.
& \text{cov}(\phi, q/p) \\
. & . & . & \sigma~2(\theta) & \text{cov}(\theta, q/p) \\
L& . & . & . & \sigma~2(q/p)
\end{bmatrix}
\end{equation*}

B Simple equations largely work, sophisticated /

specialized packages not supported
$$ dy (1)
\frac{dy}{dt} = £(t,y), \qquad y(t_0) = y_O, - f(tv), y(to) = o,
$$ (diffeq)
I am refering to equation [](#diffeq). | am refering to equation (1).

Paul Gessinger 23-11-08 - A Workshop Orsay 2023

Admonitions

:::{attention}
Attention!

:::{caution}
Caution!

:::{danger}
Danger!

:::{error}
Error!

:::{hint}
Hint!

:::{important}
Important!

© Attention

Attention!

A Caution

Caution!

A Danger

Danger!

Error!

@ Hint

Hint!

O Important

Important!

* See also

See also!

TS Workshop Orsay 2023

:::{seealso}
See also!

8 8 8(Eslaly
Tip!

:::{warning}
Warning!

See also!

Tip!

Warning!

Authoring: code documentation

We can refer to classes like {class} Acts::TrackingGeometry"~
or to functions like {funcl} Acts::getDefaultLogger".

We can refer to classes like Acts::TrackingGeometry or to
functions like Acts::getDefaultLogger() .

:::{doxygenclass} Acts::TrackingGeometry

:::{doxygenfunction} Acts::getDefaultLogger

B Roles {class} xxx~ and {func} yyy can be
used to link to the auto-generated documentation
» Need to be inserted somewhere. Classes, structs,
typedefs and enums should be auto-generated
» Otherwise you need to put {doxygenXXX} directivs
somewhere in the documentation
® Consider adding the main part of the doc in the
comment, and pull it into Sphinx

» Makes documentation available in code, easier to
keep in sync!

Paul Gessinger

class TrackingGeometry

The TrackingGeometry class is the owner of the constructed
TrackingVolumes.

It enables both, a global search for an asociatedVolume

(respectively, if existing, a global search of an associated Layer
or the next associated Layer), such as a continuous navigation
by BoundarySurfaces between the confined TrackingVolumes.

std::unique_ptr<const Logger> Acts: :getDefaultLogger(const
std::string &name, const Logging::Level &lvl, std::ostream *log_stream
= &std::cout)

get default debug output logger

This function returns a pointer to a Logger instance with the
following decorations enabled:

time stamps
name of logging instance
debug level

Parameters: name - [in] name of the logger instance

Workshop Orsay 2023

Conclusion

B Have comprehensive set of tools for documentation:
1. Doxygen comments for inline documentation of code
2. Sphinx-generated documentation for higher-level descriptions
» Mechanism to pull 1. into 2.

Low-level description of interfaces
Reasons behind decisions in classes, methods and functions
Meaning of configuration members
Design and implementation decisions of algorithms
Derivations / motivation of equations
In-depth algorithm descriptions
Either directly in the documentation, or as a white paper (see Felix’ talk next)
How-to guides on how to use core components in experiments
How-to guides on running the Examples

Paul Gessinger 2023-11-08 - ACTS Workshop Orsay 2023

https://indico.cern.ch/event/1295479/contributions/5635596/

	Building the documentation

