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The detray Project

Project Outline

• Realistic tracking geometry description and
progagation, without compromises in accuracy.

• Geometry classes without run-time
polymorphism (in particular, no virtual function
calls).

• Flat container structure with index based data
linking.

• Implementation of core package equally usable
in host and device code.

Heterogeneous Computing Model

• Core classes templated on STL vs. vecmem containers.

• Memory allocation strategy is determined by vecmem memory resources.

• The data structures are built host-side and then passed to the kernel via data views

• The copy to device happens into buffers, which are allocated on the device.

Source: https://github.com/acts-project/detray
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Geometry Description

• Volumes: defined by their boundary surfaces

• Surfaces: Placed by transformations and defined by boundary masks

• Masks: Defined by a shape type.
Specify local coordinates and extent of surfaces.

• Portals: Special surfaces that tie volumes together through index links.

• Material: Homogeneous slabs or rods of parametrized material. Many
predefined materials available.

No abstract classes: Every type needs its own container. Solved by compile-time unrolling of tuple containers.
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Geometry Container Structure

Linking by Index

• Volumes keep a multi-index to the acceleration data
structures.

• Accelerator store: tuple of e.g grids.

• Transform store holds transformation matrices
(contextual).

• Mask/material store: tuple of mask/material
vectors.

• Surfaces/Portals keep indices into the transform,
mask and material containers.

• "Barcode" identifies surfaces uniquely in flat surface
vector.

geometry :: barcode bcd; // 64 bits
bcd. volume (); // Index of the volume the surface belongs to
bcd.id (); // Id of the surfaces type (sensitive , passive , portal )
bcd. index (); // Index of the surface in the surface vector .
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Track State Propagation

Participants

• Propagator: runs the propagation loop: Calls stepper, navigator and the actors.

• Navigator: Moves between detector volumes and finds distance to next candidate surface.

• Stepper: Transports the track parameters and corresponding covariance matrix through magnetic field.

• Actors/Aborters: Extend propagation with various functionality (e.g. watch termination criteria).

The detray Project ACTS Workshop 2023 4 / 13



Build a Detector

Build your detector, i.e.:

• Build volumes/gap volumes from boundary surfaces
• Set the linking between the portals
• Define module surface factories to fill the volumes (using containers that mirror the underlying detector containers to

keep everything sorted correctly).
• Insert the per-volume containers to an empty the detector.
• Example: tutorials/src/cpu/do_it_yourself_detector.hpp

. . . or set up a predefined detector:

• Toy Detector: Models the ACTS generic detector’s pixel detector.
• Telescope Detector: Construct a number of surfaces at predefined positions or along a pilot track.
• Wire Chamber: Construct a number of layers that contain line surfaces.

> detray_generate_toy_detector -- write_material --write_grids

> detray_generate_telescope_detector -- write_material --length 550 --modules 10

> detray_generate_wire_chamber -- write_material --write_grids --layers 11
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Detector IO

[json] IO

• Readers and writers to and from an intermediate "payload" description

• Readers and writers are held and registered in detector reader/writer on demand

• Get json files from ACTS to read in tracking geometries like ITk.

• Input json files can be checked for correct layout with python tool (tests/validation/python/file_checker.py)

// Detector writer
auto writer_cfg = io :: detector_writer_config {}. format (io :: format :: json );
io :: write_detector (toy_det , toy_names , writer_cfg );

// Detector Reader
io :: detector_reader_config reader_cfg {};
reader_cfg . add_file (" toy_detector_geometry .json")

. add_file (" toy_detector_homogeneous_material .json")

. add_file (" toy_detector_surface_grids .json");

const auto [det , names ] =
io :: read_detector < detector_t >( host_mr , reader_cfg );
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Display the Portal Linking as a Graph

Volumes are nodes, linked by their portal boundary surfaces (edges).Sensitive and passive surfaces are loops.

> detray_detector_display -- geometry_file toy_detector_geometry .json
-- write_volume_graph

> dot -Tpng plots / toy_detector_volume_graph .dot > toy_detector_volume_graph .png
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Display the Geometry as an SVG

Geometry SVG Visualization

• Different views (xy, rz)
• Can display the entire detector or single volumes/surfaces by index
• Can toggle portals and passive surfaces.

> detray_detector_display -- geometry_file toy_detector_geometry .json
[-- volume 7]

detray Howto ACTS Workshop 2023 8 / 13



Geometry Validation

> detray_detector_validation --gtest_filter = detray_validation . detector_consistency
-- geometry_file toy_detector_geometry .json
-- material_file toy_detector_homogeneous_material .json
--grid_file toy_detector_surface_grids .json

Ray Scan

• Shoot straight line ray/helix through detector setup
• Record every intersection, together with associated

volume index.
• Sort by distance and check for consistent crossing of

adjacent portals.

> detray_detector_validation --gtest_filter = detray_validation . ray_scan_toy_detector
-- geometry_file toy_detector_geometry .json -- write_scan_data

> python3 / tests / validation / python / ray_scan_validation .py
--input ray_scan_toy_detector .csv [-- hide_portals -- hide_pssives ]
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Geometry Validation
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Geometry Validation

Navigation Validation

• Shoot ray/helix, but this time follow with navigator.
• Compare the entire intersection trace with the objects encountered by navigator.
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Material Validation

Material Ray scan

• Shoot rays through detector and record the material (X0, L0).
• Compare the collected material to ACTS.

> detray_material_validation -- geometry_file toy_detector_geometry .json -- material_file toy_detector_homogeneous_material .json
--phi_steps 500 --eta_steps 500

> python3 / tests / validation / python / material_validation .py --input material_scan_toy_detector .csv
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Status and Outlook

Status

• Multiple testbed geometries available, inlcuding navigation

• Adaptive Runge-Kutta-Nyström algorithm for field integration

• Transport of track parametrization and covariance through (in-)homogeneous B-field

• Simple material description with material interactions

Outlook

• IO optimizations: Deduplication, sorting

• ACTS geometry import on-going (ODD is currently under validation)

• Material maps implementation using detray grids

• Benchmarking and profiling
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Backup



Heterogeneous Computing Model

Heterogeneous Computing Model

• Core classes templated on STL vs. vecmem containers.

• Memory allocation strategy is determined by vecmem memory resources.

• The data structures are built host-side and then passed to the kernel via data views

// Transform store using managed memory
vecmem :: cuda :: managed_memory_resource mng_mr ;
// Build with host vector type
transform_store < vecmem :: vector > store ( mng_mr );
// Get store view object
auto sv = detray :: get_data ( store );

// Run the kernel
test_kernel <<<block_dim , thread_dim >>>(sv );

// Kernel -side construction
__global__ void test_kernel ( store_view sv) {

// Build with device vector type
transform_store < vecmem :: device_vector > store (sv );
// Do something

}

ACTS Workshop 2023



Define a Detector

A detector type is defined by metadata:

struct example_metadata {
// Define links to types
enum class mask_ids {

e_square2 = 0,
e_portal_rectangle2 = 1

};
enum class material_ids {

e_slab = 0,
};
// Define data store types ( including shapes )
using bfield_backend_t = ...
using transform_store = ...
using mask_store = ...
using material_store = ...
...

};

struct detector_registry {
using default_detector = full_metadata < volume_stats , 1>;
using toy_detector = toy_metadata <>;
template <typename mask_shape_t >
using telescope_detector = telescope_metadata < mask_shape_t >;

};

See: detray/detectors/detector_metadata.hpp
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Geometry Building

json IO

• Readers and writers to and from an intermediate "payload" description

• Readers and writers are held and registered in detector reader/writer on demand

• In the writer this can be done from the detector type

• In the reader this has to be done by parsing the headers of the given files (yet to be added)

Volume builders

• Volume builder class mimics detector containers to be able to build the linking correctly

• Data is added to the volume builders by surface factories, which can either be filled during IO or be surface "generators"

• After the volume builder is filled, the data is appended to the detector and the links are updated accordingly

• The basic volume builder can then be decorated with other volume builder dynamically (e.g. material builder, grid
builder) files (yet to be added)
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Display the Portal Linking as a Graph

Build and display the volume graph:

// Build graph from detector
volume_graph graph (det );

std :: cout << graph . to_string () << std :: endl;

const auto & adj_mat = graph . adjacency_matrix ();
// auto geo_checker = hash_tree ( adj_mat ); Still WIP ...

[...]
[>>] Node with index 1

-> edges :
-> 0
-> 1 (108x)
-> 2
-> leaving world (2x)

[>>] Node with index 2
-> edges :

-> 0
-> 1
-> 3
-> leaving world

[...]
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The detray Actor Model

What is an actor in detray?

• Callable that performs a task after
every step.

• Has a per track state, where results
can be passed.

• Can be plugged in at compile time.

• In detray: Aborters are actors

// initialize the navigation
navigator .init( propagation );

// Run while there is a heartbeat
while ( propagation . heartbeat ) {

// Take the step
stepper .step( propagation );

// And check the status
navigator . update ( propagation );

// Run all registered actors
run_actors ( propagation . actor_states , propagation );

// And check the status
navigator . update ( propagation );

}

Implementation

• Actors can ’observe’ other actors, i.e. additionally act on their subject’s state.
• Observing actors can be observed by other actors and so forth (resolved at compile time!).
• Observer is being handed subject’s state by actor chain

⇒ no need to know subject’s state type and fetch it.
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Define your own Actor

What is an actor in detray?

• Inherit from detray::actor
• Implement an actor state, if needed
• Implement the call operator

(overloads)

struct actor {
/// Tag whether this is a composite
struct is_comp_actor : public std :: false_type {};
/// Defines the actors state
struct state {};

};

struct print_actor : detray :: actor {
struct state {

...
};
/// Actor implementation
template <typename propagator_state_t >
void operator ()( state & printer_state , const propagator_state_t & /* p_state */) const {

// print something
}

/// Observing actor implementation
template <typename subj_state_t , typename propagator_state_t >
void operator ()( state & printer_state , const subj_state_t & subject_state ,

const propagator_state_t & /* p_state */) const {
// print something from the subject ’s state

}
};
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Actor Chain Implementation
Overview of actor implementation:

/// Base class actor implementation
struct actor {

/// Tag whether this is a composite
struct is_comp_actor :

public std :: false_type {};

/// Defines the actors state
struct state {};

};

// Actor with observers
template <class actor_impl_t = actor ,

typename ... observers >
class composite_actor final :

public actor_impl_t {
struct is_comp_actor : public std :: true_type {};
// Implement this actor
using actor_type = actor_impl_t ;
// Actor implementation + notify call
void operator ()(...) const { [...] notify (...);}

private :
// Call all observers
void notify (...) const {...}

};Building a chain:

// Define types
using observer_lvl1 = composite_actor <dtuple , print_actor , example_actor_t , observer_lvl2 >;
using chain = composite_actor <dtuple , example_actor_t , observer_lvl1 >;

// Aggregate actor states to be able to pass them through the chain
auto actor_states = std :: tie( example_actor_t :: state , print_actor :: state );

// Run the chain
actor_chain <dtuple , chain > run_chain {};
run_chain ( actor_states , prop_state );
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Full Chain

Assemble a Propagation Flow

• Define B-Field (currently only homogeneous)
• Step-size constraints
• Navigation Policies: stepper_default_policy, always_init
• Additional inspectors run in actor chain

Propagation type definitions

// Define navigator , stepper , actor chain and propagator
using navigator_t = navigator < detector_t >;
using b_field_t = detector_t :: bfield_type ;
using track_t = free_track_parameters < transform3 >;
using constraints_t = constrained_step <>; // different step -size constr .
using policy_t = stepper_default_policy ; // how to update the navigation
using stepper_t = rk_stepper < b_field_t :: view_t , transform3 , constraints_t , policy_t >;
using actor_chain_t =

actor_chain <dtuple , propagation :: print_inspector , pathlimit_aborter >;
using propagator_t = propagator <stepper_t , navigator_t , actor_chain_t >;
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Full Chain
Run track loop

constexpr scalar overstep_tol { -7. * unit <scalar >:: um };
constexpr scalar step_constr {5 * unit <scalar >:: cm };
constexpr scalar path_limit {60 * unit <scalar >:: cm };

for (auto track :
uniform_track_generator <track_t >( theta_steps , phi_steps , ori , mom )) {

track . set_overstep_tolerance ( overstep_tol );

// Build actor states and tie them together
propagation :: print_inspector :: state print_insp_state {};
pathlimit_aborter :: state pathlimit_aborter_state { path_limit };
actor_chain_t :: state actor_states = std :: tie(

print_insp_state , pathlimit_aborter_state );

// Init propagator state
propagator_t :: state state (track , d. get_bfield (), d);

// Set step constraints (the most strict will be applied )
state . _stepping

. template set_constraint <step :: constraint :: e_accuracy >( step_constr );

// Propagate the track
is_success &= p. propagate (state , actor_states );

}
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