
ACTS Workshop 2023

Geometry Model: detray

Joana Niermann on behalf of the detray developers

09.11.2023

The detray Project

Project Outline

• Realistic tracking geometry description and
progagation, without compromises in accuracy.

• Geometry classes without run-time
polymorphism (in particular, no virtual function
calls).

• Flat container structure with index based data
linking.

• Implementation of core package equally usable
in host and device code.

Heterogeneous Computing Model

• Core classes templated on STL vs. vecmem containers.

• Memory allocation strategy is determined by vecmem memory resources.

• The data structures are built host-side and then passed to the kernel via data views

• The copy to device happens into buffers, which are allocated on the device.

Source: https://github.com/acts-project/detray
The detray Project ACTS Workshop 2023 1 / 13

Geometry Description

• Volumes: defined by their boundary surfaces

• Surfaces: Placed by transformations and defined by boundary masks

• Masks: Defined by a shape type.
Specify local coordinates and extent of surfaces.

• Portals: Special surfaces that tie volumes together through index links.

• Material: Homogeneous slabs or rods of parametrized material. Many
predefined materials available.

No abstract classes: Every type needs its own container. Solved by compile-time unrolling of tuple containers.

The detray Project ACTS Workshop 2023 2 / 13

Geometry Container Structure

Linking by Index

• Volumes keep a multi-index to the acceleration data
structures.

• Accelerator store: tuple of e.g grids.

• Transform store holds transformation matrices
(contextual).

• Mask/material store: tuple of mask/material
vectors.

• Surfaces/Portals keep indices into the transform,
mask and material containers.

• "Barcode" identifies surfaces uniquely in flat surface
vector.

geometry :: barcode bcd; // 64 bits
bcd. volume (); // Index of the volume the surface belongs to
bcd.id (); // Id of the surfaces type (sensitive , passive , portal)
bcd. index (); // Index of the surface in the surface vector .

The detray Project ACTS Workshop 2023 3 / 13

Track State Propagation

Participants

• Propagator: runs the propagation loop: Calls stepper, navigator and the actors.

• Navigator: Moves between detector volumes and finds distance to next candidate surface.

• Stepper: Transports the track parameters and corresponding covariance matrix through magnetic field.

• Actors/Aborters: Extend propagation with various functionality (e.g. watch termination criteria).

The detray Project ACTS Workshop 2023 4 / 13

Build a Detector

Build your detector, i.e.:

• Build volumes/gap volumes from boundary surfaces
• Set the linking between the portals
• Define module surface factories to fill the volumes (using containers that mirror the underlying detector containers to

keep everything sorted correctly).
• Insert the per-volume containers to an empty the detector.
• Example: tutorials/src/cpu/do_it_yourself_detector.hpp

. . . or set up a predefined detector:

• Toy Detector: Models the ACTS generic detector’s pixel detector.
• Telescope Detector: Construct a number of surfaces at predefined positions or along a pilot track.
• Wire Chamber: Construct a number of layers that contain line surfaces.

> detray_generate_toy_detector -- write_material --write_grids

> detray_generate_telescope_detector -- write_material --length 550 --modules 10

> detray_generate_wire_chamber -- write_material --write_grids --layers 11

detray Howto ACTS Workshop 2023 5 / 13

Detector IO

[json] IO

• Readers and writers to and from an intermediate "payload" description

• Readers and writers are held and registered in detector reader/writer on demand

• Get json files from ACTS to read in tracking geometries like ITk.

• Input json files can be checked for correct layout with python tool (tests/validation/python/file_checker.py)

// Detector writer
auto writer_cfg = io :: detector_writer_config {}. format (io :: format :: json);
io :: write_detector (toy_det , toy_names , writer_cfg);

// Detector Reader
io :: detector_reader_config reader_cfg {};
reader_cfg . add_file (" toy_detector_geometry .json")

. add_file (" toy_detector_homogeneous_material .json")

. add_file (" toy_detector_surface_grids .json");

const auto [det , names] =
io :: read_detector < detector_t >(host_mr , reader_cfg);

detray Howto ACTS Workshop 2023 6 / 13

Display the Portal Linking as a Graph

Volumes are nodes, linked by their portal boundary surfaces (edges).Sensitive and passive surfaces are loops.

> detray_detector_display -- geometry_file toy_detector_geometry .json
-- write_volume_graph

> dot -Tpng plots / toy_detector_volume_graph .dot > toy_detector_volume_graph .png

detray Howto ACTS Workshop 2023 7 / 13

Display the Geometry as an SVG

Geometry SVG Visualization

• Different views (xy, rz)
• Can display the entire detector or single volumes/surfaces by index
• Can toggle portals and passive surfaces.

> detray_detector_display -- geometry_file toy_detector_geometry .json
[-- volume 7]

detray Howto ACTS Workshop 2023 8 / 13

Geometry Validation

> detray_detector_validation --gtest_filter = detray_validation . detector_consistency
-- geometry_file toy_detector_geometry .json
-- material_file toy_detector_homogeneous_material .json
--grid_file toy_detector_surface_grids .json

Ray Scan

• Shoot straight line ray/helix through detector setup
• Record every intersection, together with associated

volume index.
• Sort by distance and check for consistent crossing of

adjacent portals.

> detray_detector_validation --gtest_filter = detray_validation . ray_scan_toy_detector
-- geometry_file toy_detector_geometry .json -- write_scan_data

> python3 / tests / validation / python / ray_scan_validation .py
--input ray_scan_toy_detector .csv [-- hide_portals -- hide_pssives]

detray Howto ACTS Workshop 2023 9 / 13

Geometry Validation

detray Howto ACTS Workshop 2023 10 / 13

Geometry Validation

Navigation Validation

• Shoot ray/helix, but this time follow with navigator.
• Compare the entire intersection trace with the objects encountered by navigator.

detray Howto ACTS Workshop 2023 11 / 13

Material Validation

Material Ray scan

• Shoot rays through detector and record the material (X0, L0).
• Compare the collected material to ACTS.

> detray_material_validation -- geometry_file toy_detector_geometry .json -- material_file toy_detector_homogeneous_material .json
--phi_steps 500 --eta_steps 500

> python3 / tests / validation / python / material_validation .py --input material_scan_toy_detector .csv

detray Howto ACTS Workshop 2023 12 / 13

Status and Outlook

Status

• Multiple testbed geometries available, inlcuding navigation

• Adaptive Runge-Kutta-Nyström algorithm for field integration

• Transport of track parametrization and covariance through (in-)homogeneous B-field

• Simple material description with material interactions

Outlook

• IO optimizations: Deduplication, sorting

• ACTS geometry import on-going (ODD is currently under validation)

• Material maps implementation using detray grids

• Benchmarking and profiling

detray Howto ACTS Workshop 2023 13 / 13

Backup

Heterogeneous Computing Model

Heterogeneous Computing Model

• Core classes templated on STL vs. vecmem containers.

• Memory allocation strategy is determined by vecmem memory resources.

• The data structures are built host-side and then passed to the kernel via data views

// Transform store using managed memory
vecmem :: cuda :: managed_memory_resource mng_mr ;
// Build with host vector type
transform_store < vecmem :: vector > store (mng_mr);
// Get store view object
auto sv = detray :: get_data (store);

// Run the kernel
test_kernel <<<block_dim , thread_dim >>>(sv);

// Kernel -side construction
__global__ void test_kernel (store_view sv) {

// Build with device vector type
transform_store < vecmem :: device_vector > store (sv);
// Do something

}

ACTS Workshop 2023

Define a Detector

A detector type is defined by metadata:

struct example_metadata {
// Define links to types
enum class mask_ids {

e_square2 = 0,
e_portal_rectangle2 = 1

};
enum class material_ids {

e_slab = 0,
};
// Define data store types (including shapes)
using bfield_backend_t = ...
using transform_store = ...
using mask_store = ...
using material_store = ...
...

};

struct detector_registry {
using default_detector = full_metadata < volume_stats , 1>;
using toy_detector = toy_metadata <>;
template <typename mask_shape_t >
using telescope_detector = telescope_metadata < mask_shape_t >;

};

See: detray/detectors/detector_metadata.hpp

ACTS Workshop 2023

Geometry Building

json IO

• Readers and writers to and from an intermediate "payload" description

• Readers and writers are held and registered in detector reader/writer on demand

• In the writer this can be done from the detector type

• In the reader this has to be done by parsing the headers of the given files (yet to be added)

Volume builders

• Volume builder class mimics detector containers to be able to build the linking correctly

• Data is added to the volume builders by surface factories, which can either be filled during IO or be surface "generators"

• After the volume builder is filled, the data is appended to the detector and the links are updated accordingly

• The basic volume builder can then be decorated with other volume builder dynamically (e.g. material builder, grid
builder) files (yet to be added)

ACTS Workshop 2023

Display the Portal Linking as a Graph

Build and display the volume graph:

// Build graph from detector
volume_graph graph (det);

std :: cout << graph . to_string () << std :: endl;

const auto & adj_mat = graph . adjacency_matrix ();
// auto geo_checker = hash_tree (adj_mat); Still WIP ...

[...]
[>>] Node with index 1

-> edges :
-> 0
-> 1 (108x)
-> 2
-> leaving world (2x)

[>>] Node with index 2
-> edges :

-> 0
-> 1
-> 3
-> leaving world

[...]

ACTS Workshop 2023

The detray Actor Model

What is an actor in detray?

• Callable that performs a task after
every step.

• Has a per track state, where results
can be passed.

• Can be plugged in at compile time.

• In detray: Aborters are actors

// initialize the navigation
navigator .init(propagation);

// Run while there is a heartbeat
while (propagation . heartbeat) {

// Take the step
stepper .step(propagation);

// And check the status
navigator . update (propagation);

// Run all registered actors
run_actors (propagation . actor_states , propagation);

// And check the status
navigator . update (propagation);

}

Implementation

• Actors can ’observe’ other actors, i.e. additionally act on their subject’s state.
• Observing actors can be observed by other actors and so forth (resolved at compile time!).
• Observer is being handed subject’s state by actor chain

⇒ no need to know subject’s state type and fetch it.

ACTS Workshop 2023

Define your own Actor

What is an actor in detray?

• Inherit from detray::actor
• Implement an actor state, if needed
• Implement the call operator

(overloads)

struct actor {
/// Tag whether this is a composite
struct is_comp_actor : public std :: false_type {};
/// Defines the actors state
struct state {};

};

struct print_actor : detray :: actor {
struct state {

...
};
/// Actor implementation
template <typename propagator_state_t >
void operator ()(state & printer_state , const propagator_state_t & /* p_state */) const {

// print something
}

/// Observing actor implementation
template <typename subj_state_t , typename propagator_state_t >
void operator ()(state & printer_state , const subj_state_t & subject_state ,

const propagator_state_t & /* p_state */) const {
// print something from the subject ’s state

}
};

ACTS Workshop 2023

Actor Chain Implementation
Overview of actor implementation:

/// Base class actor implementation
struct actor {

/// Tag whether this is a composite
struct is_comp_actor :

public std :: false_type {};

/// Defines the actors state
struct state {};

};

// Actor with observers
template <class actor_impl_t = actor ,

typename ... observers >
class composite_actor final :

public actor_impl_t {
struct is_comp_actor : public std :: true_type {};
// Implement this actor
using actor_type = actor_impl_t ;
// Actor implementation + notify call
void operator ()(...) const { [...] notify (...);}

private :
// Call all observers
void notify (...) const {...}

};Building a chain:

// Define types
using observer_lvl1 = composite_actor <dtuple , print_actor , example_actor_t , observer_lvl2 >;
using chain = composite_actor <dtuple , example_actor_t , observer_lvl1 >;

// Aggregate actor states to be able to pass them through the chain
auto actor_states = std :: tie(example_actor_t :: state , print_actor :: state);

// Run the chain
actor_chain <dtuple , chain > run_chain {};
run_chain (actor_states , prop_state);

ACTS Workshop 2023

Full Chain

Assemble a Propagation Flow

• Define B-Field (currently only homogeneous)
• Step-size constraints
• Navigation Policies: stepper_default_policy, always_init
• Additional inspectors run in actor chain

Propagation type definitions

// Define navigator , stepper , actor chain and propagator
using navigator_t = navigator < detector_t >;
using b_field_t = detector_t :: bfield_type ;
using track_t = free_track_parameters < transform3 >;
using constraints_t = constrained_step <>; // different step -size constr .
using policy_t = stepper_default_policy ; // how to update the navigation
using stepper_t = rk_stepper < b_field_t :: view_t , transform3 , constraints_t , policy_t >;
using actor_chain_t =

actor_chain <dtuple , propagation :: print_inspector , pathlimit_aborter >;
using propagator_t = propagator <stepper_t , navigator_t , actor_chain_t >;

ACTS Workshop 2023

Full Chain
Run track loop

constexpr scalar overstep_tol { -7. * unit <scalar >:: um };
constexpr scalar step_constr {5 * unit <scalar >:: cm };
constexpr scalar path_limit {60 * unit <scalar >:: cm };

for (auto track :
uniform_track_generator <track_t >(theta_steps , phi_steps , ori , mom)) {

track . set_overstep_tolerance (overstep_tol);

// Build actor states and tie them together
propagation :: print_inspector :: state print_insp_state {};
pathlimit_aborter :: state pathlimit_aborter_state { path_limit };
actor_chain_t :: state actor_states = std :: tie(

print_insp_state , pathlimit_aborter_state);

// Init propagator state
propagator_t :: state state (track , d. get_bfield (), d);

// Set step constraints (the most strict will be applied)
state . _stepping

. template set_constraint <step :: constraint :: e_accuracy >(step_constr);

// Propagate the track
is_success &= p. propagate (state , actor_states);

}

ACTS Workshop 2023

	The <detray> Project
	<detray> Howto
	Appendix

