ACTS Workshop 2023

Status of the GSF

09.11.2023

Benjamin Huth

What is the GSF?

- Multi component Kalman Filter for Non-Gaussian noise
- Application: Electron fitting

Algorithm overview

Status

- Implementation stable (more or less)
- Integrated in ACTS CI for stable performance
- This presentation:
 - Configuration options
 - Validation & performance study in ODD
 - Next steps
 - Debugging

Configuration

Setup

10⁶ e⁺e⁻ with Geant4 in ODD GSF • [GeV] 0.0 Smeared digitization -0.5∆F (after first surface) Uniform |eta| < 3-1.0-1.5Uniform 1GeV < pT < 100GeV -2.0Remove unreconstructible particles -2-1 0 $p_{fit} - p_{true}$ [GeV] Remove fits with outliers / holes mode mean **Performance metrics:** • O68 width O95 width Failures, outliers*, holes Sample mode of residuals (because of bias) Q95 & Q68 width Mean of Q95 interval

*surfaces missed on reverse pass

Number of components?

How to create mixture?

- How to make final parameters from gaussian mixture?
 - Mean \rightarrow estimate influenced by tail
 - Mode \rightarrow not yet merged, expensive
 - Max weight component \rightarrow cheap, our best guess without further measurment constraint

Reduction methods with 12 components and weight-cutoff 1e-06

Mixture reduction

- How to make final parameters from gaussian mixture?
 - weightCut (keep only largest weights)
 - Greedy symmetric KL-Distance merger

Reduction algorithms with 12 components and weight-cutoff 1e-06

Momentum fit GSF vs KF

η and p_{T} dependence

- Here:
 - Black line: mean
 - Grey lines: standard deviation
- Still issues around $|\eta| \approx 1.5$
 - Material mapping?
 - Bethe-Heitler approximation not good enough?

Application: $Z_0 \rightarrow e^-e^+$

- Setup:
 - Force $Z_0 \rightarrow e^-e^+$ in pythia
 - Simulate with Geant
 - Fit with KF & GSF
- Fit Breit-Wigner to invariant mass distribution of Z₀
 - Clear improvement of GSF

Computational performance

- Big contribution:
 - Multi-component stepping
 - Mixture reduction

Scaling behaviour for parts of GSF

SIMD Stepper

- Idea: vectorized operations for component processing
- Implemented MultiEigenStepperSIMD with 2 backends
 - Auto-vectorization with std::array
 - std::experimental::simd
- GCC not so good, but clang shows some decent speedup
 - 8 components, speedup ~1.7
 - Less then expected on AVX2

p=1GeV, B-field=2T, free propagation

TODO

- Improve BetheHeitler Approximation for ODD
 - Provide tool for fitting parameterization
- Investigate
 - multiple scattering more in detail
 - Propagation failures
 - Errors / pull distributions
- Experiment integration would be helpful to improve further
- More performance optimization

Other stuff: GSF debugger

• Live demo (hopefully)

Backup

Weight cutoff

Different weight cutoffs with fixed component number 12

Holes, Outliers

More residulas

GSF(12) vs GSF(1)

Pulls

e⁻ vs. µ resolution

- Here:
 - Mean absolute error (don't weight outliers to much)
 - Q95 interval
- Investigate
 difference to muon
 - multiple scattering?

