
ACTS Developers Workshop, Orsay, France

Massively Parallel Clustering Algorithm R&D in ACTS

Stephen Nicholas Swatman1,2

Thursday, November 9th, 2023
1University of Amsterdam 2CERN

1

Introduction – Clustering

• Particles passing through a pixel-like
detector deposit charge in

cells

• Clustering is the process of grouping
adjacent cells...

• ...and finding their weighted centres to
approximate the true particle position

• This can then be turned into
spacepoints

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

channel0

channel1

Graphics: Uchendu Nwachukwu

2

Introduction – Clustering

• Particles passing through a pixel-like
detector deposit charge in

cells
• Clustering is the process of grouping
adjacent cells...

• ...and finding their weighted centres to
approximate the true particle position

• This can then be turned into
spacepoints

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

channel0

channel1

Graphics: Uchendu Nwachukwu

2

Introduction – Clustering

• Particles passing through a pixel-like
detector deposit charge in

cells
• Clustering is the process of grouping
adjacent cells...

• ...and finding their weighted centres to
approximate the true particle position

• This can then be turned into
spacepoints

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

channel0

channel1

Graphics: Uchendu Nwachukwu

2

CPU Clustering – SparseCCL

• Clusterization is a connected component labeling
problem

• Measurement creation is a reduction
• The composition of these is a connected component
analysis problem

• Clusterization in traccc is relatively unique because it
uses sparse data

• Existing implementation follows the SparseCCL
algorithm
• Designed specifically for sparse problems
• Developed at Paris Sorbonne University

3

GPU Challenges – Architecture

• Compared to a CPU, a GPU will usually have:
• Higher memory bandwidth
• More “cores”

• But: each “core” is much less sophisticated
• Closer to a SIMD lane than a real core!

• Cores share a front-end, so instructions must be
issued to all cores at the same time:

4

GPU Challenges – Divergence and Imbalance

• If threads in a thread group ,
some threads are idle

• Thus, compute power is wasted and the
program slows down

• A subset of is ,
where threads execute some iterative
process a different number of times

• N.B.: We developed a model for the
impact of imbalance
(

)

5

https://doi.org/10.1109/MASCOTS56607.2022.00026
https://doi.org/10.1109/MASCOTS56607.2022.00026

GPU Challenges – Architecture

• How can we parallelise SparseCCL for GPUs?
• Map one module onto one thread group...

• ...but SparseCCL is a sequential algorithm!
• ...can only use 1 (out of 32) thread: poor performance!

• Map one module onto one thread...

• ...but then we suffer from imbalance!
• ...number of hits differs significantly between

6

GPU Challenges – Architecture

• How can we parallelise SparseCCL for GPUs?
• Map one module onto one thread group...

• ...but SparseCCL is a sequential algorithm!
• ...can only use 1 (out of 32) thread: poor performance!

• Map one module onto one thread...

• ...but then we suffer from imbalance!
• ...number of hits differs significantly between

6

GPU Challenges – Architecture

• How can we parallelise SparseCCL for GPUs?
• Map one module onto one thread group...

• ...but SparseCCL is a sequential algorithm!
• ...can only use 1 (out of 32) thread: poor performance!

• Map one module onto one thread...

• ...but then we suffer from imbalance!
• ...number of hits differs significantly between

6

GPU Challenges – Architecture

• How can we parallelise SparseCCL for GPUs?
• Map one module onto one thread group...

• ...but SparseCCL is a sequential algorithm!
• ...can only use 1 (out of 32) thread: poor performance!

• Map one module onto one thread...
• ...but then we suffer from imbalance!
• ...number of hits differs significantly between

6

DSE – Expanding the Design Space

• We used to have a GPU clustering
implementation but it was prohibitively
slow

• Let’s see what the available design
options are...

• ...and then systematically remove
non-feasible options

• From there, we can design, implement,
and evaluate a GPU-based solution!

7

DSE – CCL Algorithms

• CCL problems come in three flavours:
dense, sparse, and graph-based

• Sparse and dense problems are
isomorphic

• Graph to dense is possible if the graph
is planar

• But what about reducing sparse
problems to graph problems?

CCL Family Position Connection Lit.

Dense Implicit Implicit 

Sparse Explicit Implicit 

Graph N/A Explicit 

8

DSE – CCL Algorithms

• We can collect at most eight neighbours
for each cell

• In general, finding neighbours is an
O(2) operation

• Because our data is sorted we can find
neighbours more efficiently

• By collecting the adjacenct cells we can
construct a graph!

9

DSE – Datastructures – Jagged Vectors

• Vector-of-vectors: one vector per cluster, push hits
into it

• requires dynamic allocation of memory
• Trivial on CPU, costly to impossible on GPU

• often causes imbalance, although this can
sometimes be avoided

• In general: hostile to GPU programming

10

DSE – Datastructures – Disjoint-Set array

• Simpler storage method is an array: for
each cell , store the index of parent
• 8 : �
• 8 ; 9! : = =

• Does not require dynamic allocation
• Fully isomorphic to a jagged vector

0 1 2 3 4 5 6 7 8

0 0 2 0 0 2 2 2 8

9 10 11 12 13 14 15 16 17

8 0 2 12 8 12 12 16 0

f0; 1; 3; 4; 10; 17g; f2; 5; 6; 7; 11g

f8; 9; 13g; f12; 14; 15g; f16g

11

DSE – Aggregation

• Numerically stable variance calculation using Welford’s algorithm
• Two options for implementing this
• Parent cells find their children and compute their variance

• Susceptible imbalance
• Child cells reduce to their parents

• Balanced but requires shared memory atomic
• Best implementation depends on hardware!

12

