
Neural-network measurement calibration

Louis-Guillaume Gagnon (UC Berkeley)

ACTS developers workshop 2023
2023/10/11

1 / 14



Introduction: Pixels

▶ Running example today: Silicon Pixel Detector

▶ Ionisation due to incident charged particle
→ measured voltage in individual pixels

▶ Pixel chip records the time-over-threshold

▶ With calibration, convert to deposited charge

▶ Typically measured directly with known charge injection
▶ Outside of scope of ACTS – handled by experiments

▶ not the calibration that’s covered today!
 )

-
Injected Charge (e

0 5000 10000 15000 20000 25000 30000 35000 40000

P
ix

e
l 
T

O
T

 (
2
5
 n

s
)

0

10

20

30

40

50

60

70

80

1

10

210

310

410

5
10

610
ATLAS Preliminary

2 / 14



Introduction: Measurements

▶ From Si pixel detector: get location and charge of
above-threshold pixels

▶ Beginning of ACTS Core scope: Clusterization

▶ Connected component analysis → charge clusters
▶ In ACTS: Hoschen-Kopelman algorithm

▶ “Implicit” raster scan over pixels
▶ Use disjoint set forest to keep track of cluster assignment

▶ Initial position estimation from measurement:
Currently outside of scope of ACTS Core!
▶ In General, need knowledge of readout geometry

▶ In ACTS examples, simple strategy:
▶ Position estimate: Charge-weighted average of pixel

center positions
▶ Uncertainty estimate: Pixel width /

√
12

3 / 14

https://en.wikipedia.org/wiki/Hoshen%E2%80%93Kopelman_algorithm


Introduction: Kalman Filter

▶ ACTS Track state model: (d0, z0, θ, ϕ, q/p, t)
▶ with associated covariance

▶ Estimated with measurements from detector
▶ E.g. for pixel detector: m = (x , y)

▶ with associated covariance, usually diagonal

▶ Track state incorporates measurements via
Kalman Filter formalism
▶ Start from track seed parameters
▶ Predict parameters at next surface
▶ Search for matching measurements
▶ Kalman update stage: Update track state

using matching measurement
▶ Repeat until no more surfaces

▶ Nucl.Instrum.Meth.A 262 (1987) 444-450

4 / 14

https://doi.org/10.1016/0168-9002(87)90887-4


Introduction: Kalman Filter

▶ At a glance:

[2105.01796]

▶ Left: Have a track state at layer k − 1 and a measurement on layer k

▶ Center: Using known track state and its covariance, Predict track state at layer k

▶ Right: Obtain track state at layer k by updating the prediction with the measurement

5 / 14

https://arxiv.org/abs/2105.01796


Measurements ↔ Calibration

▶ From pixel detector, obtained measurements m = (x , y)
▶ (x , y) = charge-weighted cluster center
▶ (σx , σy ) = pix. width /

√
12

▶ Possible to improve:
▶ Take direction into account
▶ Do fancier shape analysis
▶ . . .

▶ Measurement calibration paradigm: Apply corrections to
estimated measurements during Kalman update stage
▶ Simple scale-and-offset schemes
▶ ATLAS: “Analogue clustering”, NN-based clustering
▶ . . . many other possibilities

6 / 14



Simplest Possible Example: Single-pixel measurement

▶ Primarily rely on shape analysis to constrain
position

▶ Edge case: 1-pixel clusters, “no” shape
information

▶ However: Angles of incidence give some
constraint!
▶ ≈ 90◦ crossing: Anywhere on surface
▶ → 0◦ crossing: Near center (else, ≥ 2 pixel)

▶ N.B. position defined at middle of Si bulk, by
convention

7 / 14



Simplest Possible Example: Single-pixel measurement, longitudinal position

▶ Single-pixel clusters offer simple example of
interplay between cluster shape, crossing
angles, and position

▶ Clear relationship between σ(pos) and angle

▶ θ ≈ π/2 (head-on): σ largest

▶ θ ≪ π/2: σ smallest

▶ Intuition: If θ ≪ π/2 AND position not near
center: high likelihood of having ≥ 1 pixel
cluster!

▶ =⇒ If can estimate crossing angle, can
assign “correct” irreducible uncertainty to
measurement

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3
 [rad]θIncident 

0.05−

0.04−

0.03−

0.02−

0.01−

0

0.01

0.02

0.03

0.04

0.05

Lo
ca

l y
 p

os
iti

on
 [m

m
]

ACTS Generic Detector

Pixel Barrel

1-pixel clusters

=200〉µ〈, tPythia8 t

8 / 14



Measurement Calibration with Neural Networks

▶ MDN ≡ Mixture Density Network

▶ i.e. any neural network trained to output parameters of a gaussian mixture

▶ Model output: parameters πi , µi , σi such that:

P(Y |X ) ∼
∑
i

πi (X )N (Y |µi (X ), σi (X ))

▶ X is set of variables describing a measurement (e.g. charge, volume/layer, angles of incidence)
▶ Y is true crossing position in Si bulk (ground truth)
▶ πi (X ): Prior probability for i-th component (if using ≥ 2 components)
▶ µi (X ): Calibrated position estimate (Supervised learning)
▶ σi (X ): Uncertainty estimate (Unsupervised learning)

▶ If using single component, model is a simple normal distribution

▶ Trained using probabilistic programming paradigm: loss is directly − logP(Y |X )

▶ At runtime, use µi ± σi corresponding to highest πi as position estimate

▶ This method naturally generalizes to clusters with ≥ 2 particles
▶ Method used by ATLAS collaboration for pixel measurement calibration

▶ See e.g. ATL-PHYS-PROC-2019-082

9 / 14

https://cds.cern.ch/record/2687968


Possible neural network architecture

▶ Example Architecture to work with
NeuralCalibrator in ACTS Examples

▶ Input → NN → Mean, Variance: Can be any
neural network

▶ For proof-of-concept:
simple tensorflow.keras dense network

▶ Loss: IndependantNormal layer from
tensorflow probability

▶ “public” example coming soon™
▶ Not one-size-fits-all detector-agnostic network
▶ Rather, reference implementation +

“how-to-train” documentation

10 / 14

https://github.com/acts-project/acts/pull/2111
https://www.tensorflow.org/probability


Measurement Calibration with Neural Networks: in action

▶ Clear relationship between σ(pos) and angle
▶ Stronger constraint at large angles
▶ Weaker constraint for head-on particles

▶ “Head-on” variance > pixel width /
√

(12):
Charge drift from neighboring pixels (?)

▶ σx/y are model-estimated uncertainties,
not residuals

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

 [rad]θIncident 

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

 [m
m

]
〉 yσ〈 

ACTS Generic Detector

Pixel Barrel

1-pixel clusters

=200〉µ〈, tPythia8 t

MDN calibrator

12pixel width / 

11 / 14



Calibration interface in ACTS

▶ The ACTS tracking toolkit contains Kalman Filter-based track finding & fitting algorithms

▶ Calibrations can be applied on-the-fly during track finding / track fitting

▶ Interface implemented using template-based delegation:

class KalmanFitterExtensions {

using Calibrator = Delegate<void(const GeometryContext&, const CalibrationContext&,

const SourceLink&, TrackStateProxy)>;

/// The Calibrator is a dedicated calibration algorithm that allows

/// to calibrate measurements using track information, this could be

/// e.g. sagging for wires, module deformations, etc.

Calibrator calibrator;

...

};

▶ Calibrator class acts directly on track state proxy, which holds the current measurement

▶ Dynamic geometry effects and intra-run calibration changes encapsulated via contextualization

12 / 14



Calibration interface in ACTS Examples framework

▶ See ActsExamples/EventData/MeasurementCalibration.hpp

▶ The ACTS Core calibration interface does not directly take measurements

▶ Previously: Calibrators would be instantiated for each event
with vector of measurement in constructor

▶ Fine for calibrators with “trivial” initialization, not fine for more complex cases
▶ Now have access to a different approach:

▶ MeasurementCalibrator base class that accepts vector of measurements in its calibrate method
▶ MeasurementCalibratorAdapter wrapper that binds a vector of measurements to a calibrator

▶ Calibrator can be instantiated once, outside of event loop

▶ Adapter instantiated for each event, with trivial initialization

▶ Adapter has a calibrate method that conforms to the ACTS Core interface
▶ Uses of this interface in the Examples:

▶ ScalingCalibrator
▶ NeuralCalibrator (Uses ONNX plugin)

13 / 14

https://github.com/acts-project/acts/pull/2085
https://github.com/acts-project/acts/pull/2111


Conclusion

▶ Measurement Calibration: Correcting the measurement positions & errors
on-the-fly during track finding & track fitting

▶ The ACTS Kalman Filter includes efficient template-based interface to measurement calibration

▶ Different examples are provided: Simple ScalingCalibrator, Fancy MDN-based NeuralCalibrator

▶ Future plans:
▶ Provide documentation and tutorials for the interface and the examples
▶ Explore more calibration methods (e.g. ATLAS “Analogue Clustering”)
▶ Implement ATLAS-inspired dense environment calibration

(Cluster splitting, positions for ≥ 2 particles, . . . )

14 / 14


