Neural-network measurement calibration

Louis-Guillaume Gagnon (UC Berkeley)

 $\begin{array}{c} \text{ACTS developers workshop 2023} \\ 2023/10/11 \end{array}$

- Running example today: Silicon Pixel Detector
- Ionisation due to incident charged particle

 measured voltage in individual pixels
- Pixel chip records the time-over-threshold
- With calibration, convert to deposited charge
- Typically measured directly with known charge injection
- Outside of scope of ACTS handled by experiments
 - <u>not</u> the calibration that's covered today!

- From Si pixel detector: get location and charge of above-threshold pixels
- Beginning of ACTS Core scope: Clusterization
- Connected component analysis \rightarrow charge clusters
- ► In ACTS: Hoschen-Kopelman algorithm
 - "Implicit" raster scan over pixels
 - Use disjoint set forest to keep track of cluster assignment
- Initial position estimation from measurement: Currently outside of scope of ACTS Core!
 - In General, need knowledge of readout geometry
- In ACTS examples, simple strategy:
 - Position estimate: Charge-weighted average of pixel center positions
 - Uncertainty estimate: Pixel width $/\sqrt{12}$

- ACTS Track state model: $(d_0, z_0, \theta, \phi, q/p, t)$
 - with associated covariance
- Estimated with <u>measurements</u> from detector
- E.g. for pixel detector: m = (x, y)
 - with associated covariance, usually diagonal
- Track state incorporates measurements via Kalman Filter formalism
 - Start from track seed parameters
 - Predict parameters at next surface
 - Search for matching measurements
 - Kalman update stage: Update track state using matching measurement
 - Repeat until no more surfaces
- ▶ Nucl.Instrum.Meth.A 262 (1987) 444-450

► At a glance:

[2105.01796]

- Left: Have a track state at layer k-1 and a measurement on layer k
- \blacktriangleright Center: Using known track state and its covariance, Predict track state at layer k
- Right: Obtain track state at layer k by updating the prediction with the measurement

- From pixel detector, obtained measurements m = (x, y)
 - (x, y) = charge-weighted cluster center
 - $(\sigma_x, \sigma_y) = \text{pix. width } / \sqrt{12}$
- Possible to improve:
 - Take direction into account
 - Do fancier shape analysis
 - ► ...
- Measurement calibration paradigm: Apply corrections to estimated measurements during Kalman update stage
 - Simple scale-and-offset schemes
 - ATLAS: "Analogue clustering", NN-based clustering
 - ... many other possibilities

- Primarily rely on shape analysis to constrain position
- Edge case: 1-pixel clusters, "no" shape information
- However: Angles of incidence give some constraint!
 - \blacktriangleright \approx 90° crossing: Anywhere on surface
 - ▶ $\rightarrow 0^{\circ}$ crossing: Near center (else, ≥ 2 pixel)
- N.B. position defined at middle of Si bulk, by convention

- Single-pixel clusters offer simple example of interplay between cluster shape, crossing angles, and position
- Clear relationship between $\sigma(pos)$ and angle
- $\theta \approx \pi/2$ (head-on): σ largest
- $\theta \ll \pi/2$: σ smallest
- Intuition: If θ ≪ π/2 AND position not near center: high likelihood of having ≥ 1 pixel cluster!
- If can estimate crossing angle, can assign "correct" irreducible uncertainty to measurement

Measurement Calibration with Neural Networks

- $MDN \equiv Mixture Density Network$
- ▶ i.e. any neural network trained to output parameters of a gaussian mixture
- Model output: parameters π_i, μ_i, σ_i such that:

$$P(Y|X) \sim \sum_{i} \pi_i(X) \mathcal{N}(Y|\mu_i(X), \sigma_i(X))$$

- ► X is set of variables describing a measurement (e.g. charge, volume/layer, angles of incidence)
- Y is true crossing position in Si bulk (ground truth)
- $\pi_i(X)$: Prior probability for *i*-th component (if using ≥ 2 components)
- $\mu_i(X)$: Calibrated position estimate (Supervised learning)
- $\sigma_i(X)$: Uncertainty estimate (Unsupervised learning)
- ▶ If using single component, model is a simple normal distribution
- ▶ Trained using probabilistic programming paradigm: loss is directly $-\log P(Y|X)$
- At runtime, use $\mu_i \pm \sigma_i$ corresponding to highest π_i as position estimate
- ▶ This method naturally generalizes to clusters with \geq 2 particles
- Method used by ATLAS collaboration for pixel measurement calibration
 - See e.g. <u>ATL-PHYS-PROC-2019-082</u>

- Example Architecture to work with <u>NeuralCalibrator</u> in ACTS Examples
- ▶ Input \rightarrow NN \rightarrow Mean, Variance: Can be any neural network
- For proof-of-concept: simple tensorflow.keras dense network
- Loss: IndependantNormal layer from tensorflow_probability
- ▶ "public" example coming soon™
 - Not one-size-fits-all detector-agnostic network
 - Rather, reference implementation + "how-to-train" documentation

Measurement Calibration with Neural Networks: in action

- Clear relationship between $\sigma(pos)$ and angle
 - Stronger constraint at large angles
 - Weaker constraint for head-on particles
- ► "Head-on" variance > pixel width / √(12): Charge drift from neighboring pixels (?)
- σ_{x/y} are model-estimated uncertainties, <u>not</u> residuals

Calibration interface in ACTS

- ▶ The ACTS tracking toolkit contains Kalman Filter-based track finding & fitting algorithms
- Calibrations can be applied on-the-fly during track finding / track fitting
- Interface implemented using template-based delegation:

/// The Calibrator is a dedicated calibration algorithm that allows
/// to calibrate measurements using track information, this could be
/// e.g. sagging for wires, module deformations, etc.
Calibrator calibrator;

```
...
};
```

- Calibrator class acts directly on track state proxy, which holds the current measurement
- ▶ Dynamic geometry effects and intra-run calibration changes encapsulated via contextualization

Calibration interface in ACTS Examples framework

- See ActsExamples/EventData/MeasurementCalibration.hpp
- ▶ The ACTS Core calibration interface does not directly take measurements
- Previously: Calibrators would be instantiated for each event with vector of measurement in constructor
- ▶ Fine for calibrators with "trivial" initialization, not fine for more complex cases
- ► Now have access to a different approach:
 - MeasurementCalibrator base class that accepts vector of measurements in its calibrate method
 - MeasurementCalibratorAdapter wrapper that binds a vector of measurements to a calibrator
- Calibrator can be instantiated once, outside of event loop
- Adapter instantiated for each event, with trivial initialization
- Adapter has a calibrate method that conforms to the ACTS Core interface
- Uses of this interface in the Examples:
 - ScalingCalibrator
 - NeuralCalibrator (Uses ONNX plugin)

- Measurement Calibration: Correcting the measurement positions & errors on-the-fly during track finding & track fitting
- ▶ The ACTS Kalman Filter includes efficient template-based interface to measurement calibration
- Different examples are provided: Simple ScalingCalibrator, Fancy MDN-based <u>NeuralCalibrator</u>

Future plans:

- Provide documentation and tutorials for the interface and the examples
- Explore more calibration methods (e.g. ATLAS "Analogue Clustering")
- ► Implement ATLAS-inspired dense environment calibration (Cluster splitting, positions for ≥ 2 particles, ...)