

Using Time Information in ACTS Vertexing Algorithms

Ideas & Concepts

Felix Russo

09/11/2023

 $t \in T \sim \widehat{\mathbf{q}} = \left(d_0, z_0, \phi, \theta, \frac{q}{n}\right)$ $(\frac{q}{p},t_0)^1$ $v \in V \sim (x, y, z, t)$ and $\mathbf{p} \forall t \in T_v \subset T$

Felix Russo | Time Vertexing **2 2** with respect to some reference line (e.g., the z-axis). All quantities have associated covariance matrixes, e.g., $K_{\hat{q}}$ for the track parameters.

Simplified Structure

AdaptiveGridTrackDensity.*pp & AdaptiveGridDensityVertexFinder.*pp

- Goal: Find a first estimate of the vertex position from a set of tracks
- Tracks are modeled as a 2D Gaussian distribution in the d -z-plane¹
- Density at $d = 0$ is calculated at discrete z-values for each track and added to a map

M: bin \rightarrow densityValue

- Cache track densities \rightarrow can be removed without recalculating their contribution
- We effectively have a 1D density grid; its maxima are the vertex seeds $(0, 0, z_{max}, 0)$

AdaptiveGridTrackDensity.*pp & AdaptiveGridDensityVertexFinder.*pp

• Data:

- Five vertices (red dots) at random positions
- 4 Muons per vertex
- Tracks reconstructed using default seeding

and Combinatorial Kalman Filter

• In high-luminosity environments, the 1D description is not sufficient to resolve all vertices¹

AdaptiveGridTrackDensity.*pp & AdaptiveGridDensityVertexFinder.*pp

- Time can be included using a 3D distribution in the d - z - t -plane
- As before, we evaluate at $d = 0$ to obtain a 2D grid
- Its maxima are the vertex seeds $(0, 0, z_{max}, t_{max})$
- Vertices can be resolved now!

ImpactPointEstimator.*pp

- Goal: Estimate compatibility between vertices and tracks
- Find the 3D point of closest approach (PCA) between the track and the vertex
	- Use the Newton method to find a minimum of the distance
- Propagate to the PCA, i.e., a plane reference surface with its origin at the vertex
	- $\overline{}$ x-axis in direction of the PCA
	- $-$ z-axis in direction of the momentum
	- y -axis follows from orthogonality

ImpactPointEstimator.*pp

• Calculate $\chi^2_{\text{vtx,trk}} = \bar{r}^T K_{\text{trk}}^{-1} \bar{r}$, where:

$$
- \bar{\mathbf{r}} = \mathbf{r}_{trk} - \mathbf{r}_{vtx} \qquad - \mathbf{r}_{trk} = \begin{pmatrix} x_{trk} \\ y_{trk} \\ t_{trk} \end{pmatrix} \qquad - \mathbf{r}_{vtx} = \begin{pmatrix} 0 \\ 0 \\ t_{vtx} \end{pmatrix}
$$

• Note that $z_{trk} = z_{vtx} = 0$ because both are on the reference surface

ImpactPointEstimator.*pp

- Same data as before
- Choose a random vertex
- Calculate $\chi^2_{\text{vtx,trk}}$ for all tracks with and without time
- The green lines indicate the tracks that really originate at the vertex

Adaptive Multi-Vertex Fitter

AdaptiveMultiVertexFitter.*pp & KalmanVertexUpdater.*pp,

- Based on a Kalman Filtering approach + annealing
- Minimizes $\chi^2_{total} = \sum_{vertices} \sum_{tracks} (w(T, \chi^2_{vtx, trk}) \ \overline{\mathbf{q}}^T \mathbf{K}_{\widehat{\mathbf{q}}}^{-1} \overline{\mathbf{q}})$
- $\overline{q} = q_{model} \hat{q}$
- $\widehat{\mathbf{q}}$ and $\mathbf{K}_{\widehat{\mathbf{q}}}^{-1}$ come from the tracking; $\chi^2_{\text{vtx,trk}}$ comes from the impact point estimation
- $\mathbf{q}_{\text{model}}\left(\mathbf{r}_{V}, \mathbf{p}_{V}\right) \approx \mathbf{q}(\mathbf{r}_{\text{PCA}}, \mathbf{p}_{\text{PCA}}) + \mathbf{A}\left(\mathbf{r}_{V} \mathbf{r}_{\text{PCA}}\right) + \mathbf{B}\left(\mathbf{p}_{V} \mathbf{p}_{\text{PCA}}\right)$

•
$$
A = \frac{\partial q}{\partial r_W}|_{W = PCA}
$$
 and $B = \frac{\partial q}{\partial p_W}|_{W = PCA}$ are the Jacobians

Track Linearization

HelicalTrackLinearizer.*pp

- Analytically: $A =$ $-\sin(\phi)$ $\cos(\phi)$ 0 0 − ρ \mathcal{S}_{0} $\cot(\theta) \cos(\phi)$ – ρ \mathcal{S}_{0} $\cot(\theta) \sin(\phi)$ 1 0 − $\text{sgn}(\rho$ \mathcal{S}_{0} $cos(\phi)$ – $\text{sgn}(\rho$ \mathcal{S}_{0} $cos(\phi)$ 0 0 0 0 0 0 0 0 0 0 − ρ $c\beta_T S$ $cos(\phi)$ − ρ $c\beta_T S$ $\sin(\phi)$ 0 1 $d\mathbf{q}$ dx_w ቚ W=PCA $d\mathbf{q}$ dy_w ቚ W=PCA $d\mathbf{q}$ dz_w ቚ W=PCA $d\mathbf{q}$ dt_w ቚ W=PCA
- ρ ... signed helix radius
- $S... x y$ distance between vertex and helix center
- $c\beta_T...$ speed in the $x y$ plane

Track Linearization

HelicalTrackLinearizer.*pp

- Assumes a constant magnetic field
- For the other Jacobian B, also the last row had to be added (not shown here)
- Derived together with P. Butti thanks a lot!
- Results checked numerically

Track Linearization

NumericalTrackLinearizer.*pp

• Numerically (here for derivatives wrt ϕ):

- $\cdot \frac{\partial q}{\partial t}$ $\frac{\partial \mathbf{q}}{\partial \phi}$ | PCA $\approx \frac{\hat{\mathbf{q}}(\phi + \Delta \phi) - \hat{\mathbf{q}}(\phi)}{\Delta \phi}$ $Δφ$
- Computationally expensive, but works for a non-constant magnetic field \rightarrow Potentially useful for secondary vertexing

y

Results from Billoir Vertex Fit

FullBilloirVertexFitter.*pp, physmon_ckf_tracking.py

- Fitting the vertex time using the Billoir method
	- Mathematically equivalent to the Kalman vertex fit
	- Kalman vertex fitter is not ready yet
- Using 500 4-Muon events
- Pseudo pile-up of 50
	- Particle gun with vertex smearing
- Default seeding + Combinatorial Kalman Filter

Results from Billoir Vertex Fit

FullBilloirVertexFitter.*pp, physmon_ckf_tracking.py

ÉRN

Results from Billoir Vertex Fit

FullBilloirVertexFitter.*pp, physmon_ckf_tracking.py

CERN

Conclusion

- Time is gradually introduced into the ACTS vertexing suite
- Can be included elegantly by adding a new dimension
- Partial time measurements should not be a problem
	- If a tracks does not have a time measurement, we inflate the corresponding covariance
- Time vertexing is promising enhanced resolution in high-luminosity environments
- Big thanks to: P. Butti, P. Gessinger-Befurt, A. Salzburger, B. Schlag, A. Stefl

AdaptiveGridTrackDensity.*pp & AdaptiveGridDensityVertexFinder.*pp

• Mathematical model

$$
P(d, z) \propto \frac{1}{\det(\mathbf{K}_{\widehat{\mathbf{q}_{IP}}})} \exp(\overline{\mathbf{q}_{IP}}^T \mathbf{K}_{\widehat{\mathbf{q}_{IP}}}^{-1} \overline{\mathbf{q}_{IP}})
$$

$$
\mathbf{q}_{IP} = \mathbf{q}_{IP} - \widehat{\mathbf{q}_{IP}} \qquad \qquad \mathbf{q}_{IP} = \begin{pmatrix} d \\ z \end{pmatrix} \qquad \qquad \widehat{\mathbf{q}_{IP}} = \begin{pmatrix} d_0 \\ z_0 \end{pmatrix}
$$

• Using time:

$$
\mathbf{q}_{\text{IP}} = \begin{pmatrix} d \\ z \\ t \end{pmatrix} \qquad \qquad \widehat{\mathbf{q}_{\text{IP}}} = \begin{pmatrix} d_0 \\ z_0 \\ t_0 \end{pmatrix}
$$

 \mathbf{r}

ImpactPointEstimator.*pp

• Unnormalized $\chi^2_{\rm vtx,trk}$

ÉRN

Adaptive Multi-Vertex Fitter

AdaptiveMultiVertexFitter.*pp & KalmanVertexUpdater.*pp,

- Based on a Kalman Filtering approach + annealing
- Adding a new measurement \sim adding a track to the fit
- Temperature is decreased \rightarrow outliers are weighted down gradually
- $\chi^2 = \chi^2_{\text{vtx,trk}}$ from impact point estimation
- A track can be associated to multiple vertices
	- Vertices are competing for tracks

