

ACTS in ATLAS

Tomohiro Yamazaki on behalf of ACTS developers in ATLAS

> ACTS workshop November 10th, 2023

ATLAS

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

- Tracks are fundamental for ATLAS event reconstruction
- Significant portion of CPU time is used for tracking
- Tracking improvement is crucial for ATLAS

reconstruction

- ATLAS plans to use ACTS for full tracking in HL-LHC (2029-)
- Not only because ACTS is advanced. Huge benefit in terms of the maintainability

2023-11-10

ACTS Workshop 2023

ITk

Two development lines available

- ACTS in the ATLAS reconstruction software (athena)
- Standalone ACTS with ITk geometry for R&D <u>full chain itk.py</u> (geometry is ATLAS internal)

The current ATLAS tracker will be replaced with full silicon **Inner Tracker (ITk)** in HL-LHC

ITk Pixel

25 x 100 (innermost), 50x50 (others) μm²

- ITk Strip
 - ~75 µm strip pitch
- HGTD (High Granularity Timing Detector)
 - 1.3x1.3 mm² pixel, 30 ps timing resolution

ACTS Workshop 2023

ACTS in ATLAS Run3

ACTS AMVF primary vertex reconstruction is now fully integrated
 Already used in Run3 production (current data-taking)

- Need to check changes due to ACTS version bumps (Carlo's talk)
- Identical physics performance
- ▶ 40% reduction of the CPU time compared to non-ACTS AMVF

ACTS for ITk track reconstruction

- ▶ ACTS integration into ATLAS reconstruction software (athena) is in progress
- Replacing old non-ACTS components with ACTS tracking tools
- At this time, the main tracking chain (clustering, SP formation, seeding, CKF, ambiguity solver) is available.
- Validation against non-ACTS algorithms, and optimization for further improvement ongoing
- Details on the ATLAS athena infrastructure in Carlo's talk

EDM

▶ Track and vertex EDMs for analyses and downstream customers remain

New ATLAS EDMs (xAOD) for tracking inputs (designed with GPUs in mind, more memory efficient)

- xAOD::UncalibratedMeasurement base class for ATLAS specific measurements
- xAOD::PixelCluster, xAOD::StripCluster, and more muon Measurements
- xAOD::SpacePoint
- ACTS-athena EDM converters available for validation

Track EDM — Interface and memory backend are decoupled to avoid EDM conversion

- Memory backend is fully ATLAS specific
- Interface with dependencies on both ACTS and memory backend

Clustering

- ACTS clustering deployed in athena for both Pixels and Strips
- Algorithms are not exactly the same, but identical physics performance between ATLAS legacy and ACTS (deterministic problem)
 ACTS is 10-20% faster

Seeding

▶ Space Points

- Strip SP formation deployed in athena.
- No need for pixel SP (Just local → global transformation)

▶ Seeding

- Nominal and orthogonal seeding algorithms deployed in athena.
- Nominal seeding (originally from ATLAS) shows identical performance with compatible CPU performance
- Orthogonal algorithm also being optimized.

Seeding Efficiency Simulation Preliminary Pixel Seeds - ACTS in Athena √s = 14 TeV. HL-LHC ITk Layout: 03-00-00 Strip Seeds - ACTS in Athena tť, $\langle \mu \rangle$ = 200, Truth p₁ > 1 GeV - All Seeds - ACTS in Athena — All Seeds - Current Athena ACTS v29.1.0, Athena 24.0.12 0.8 0.6 0.4 0.2 0_⊿ _2 <u>_</u>^ Truth n

- Seed selection
 - Seeding produces 5-15 seeds / track
 - Reduction of seeds processed by CKF is crucial to reduce CKF execusion time
 - Remove seeds if all measurements are already used for a trajectory previously found by the track finding
 - Another selection based on seed quality

ACTS Tracking performance

ACTS CKF deployed in athena

- Measurement calibration missing
- Non-ACTS ambiguity solver used

It is still under optimization but already shows promising physics performance

ACTS KF validated against the ATLAS global chi2 fitter.

ACTS Tracking performance

ACTS CKF produces more tracks than ATLAS legacy algorithm

- The two algorithms are not equivalent and ACTS is still under developement
- ACTS CKF is still slower due to the large number of track candidates
 - Further reduction of branches required
- Post-CKF track selection based on p_T, η, and N_{hit}
- Will implement more complex ambiguity solver using track summary, eta, shared hits, cluster splitting.
- Inward propagation from starting point is missing
- ▶ KF-based seed refinement will be implemented to further reduce seeds (-30% expected)

	Legacy	ACTS	ttbar, 200 pileup
Seeds /event	31k	31k	
CKF tracks /event	ork in pu	41k	
Seleted tracks /event	5k	Ograks	
Resolved tracks /event	2k	2k	

Muon

Muon spectrometer (MS) is more complex than inner trackers

- Different detector technologies (Drift tubes, RPC, Thin gap chambers, Micromegas)
- Highly inhomogeneous magnetic field and large amount of material
- ▷ ACTS simplifies very complicated ATLAS MS navigation (800→200 lines of code)
 - Developed mockup MS geometries with the new ACTS
 - geometry mode chambers, and
 - Successfully te delegate schen
- MS specific functional
 Gravitational w

Mock up muon set be spectrometer . Every detector volume holds the navigation delegate

Closest approach to straw surfaces during propagation

ACTS Workshop 2023

More ongoing and future developments

GSF for electron refitting

- First prototype integrated. Electron refitting study planned
- Algorithms for online tracking
 - Hough transform, regional tracking, graph-based fast seeding
- ▶ ITk alignment with ACTS KF
- Tracking with HGTD
 - Extrapolate tracks to HGTD and associate HGTD hits for track time
 - ACTS track with time allows 4D-tracking
- Tracking in dense environments
 - ATLAS legacy tracking uses a dedicated neural network to deal with merged and shared clusters.
- Secondary vertex fitting is currently missing. Unification of primary and secondary vertexing is a future goal.

Summary

▶ ATLAS will use ACTS extensively for tracking in HL-LHC

- ACTS PV is already used in Run3

▶ Finalizing the ACTS-based main tracking chain with ITk detector

- Clustering, space point formation, seeding, CKF, and ambiguity solver deployed.
- Despite some missing components, promising performance achieved.
- Extensive validation campaign ongoing in both physics and CPU performance
- Developments of ACTS tracking for dedicated reconstruction ongoing
 - Muon reconstruction
 - GSF for electrons
 - Tracking in dense environments
 - Online tracking
- Looking forward to discussing ways to boost performance with other experiments

Backup