

GOBIERNO DE ESPAÑA E INNOVACIÓN

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

The Latest Time Variation Measurements with AMS

M. A. Velasco, CIEMAT, Madrid (Spain) on behalf of the AMS Collaboration

3rd Workshop on Trasgo detectors Facultad de Física, Universidad de Santiago de Compostela *June 27, 2023*

AMS was installed on the International Space Station in May 2011

Near Earth Orbit: • altitude 400 km • inclination 52 deg • period 92 min

To date, over 220 billion charged particles have been collected by AMS₂

AMS is a space version of a precision detector used in accelerators

Solar Modulation of Cosmic Rays

Cosmic rays (high energy)

Shockfront

Cosmic ray intensity at low energies is modulated by the Sun through the influence of magnetic field and solar wind.

Cosmic rays (low energy)

Heliosphere

Solar System

Long Term Variation: Solar Cycle

The most significant long-term scale variation of cosmic rays is related to the 11-year solar cycle.

Cosmic Ray Recurrent Variation in Short Scale

Short scale variation of cosmic rays are related to Sun's rotation (Bartels' rotation: 27 days).

2016-03-22

2016-03-24

2016-03-26

Image taken by Dynamics Observatory (SDO), NASA

Coronal holes are regions where plasma density and temperature are lower, so they appear darker in images.

Cosmic Ray Recurrent Variation in Short Scale

Coronal Holes are sources of high speed solar wind affecting Earth.

Precision measurements of the individual species of cosmic rays in a solar cycle provide unique inputs for the understanding of cosmic rays in the heliosphere.

AMS Daily Proton Flux

Recurrent Proton Flux Variation in 2016

Double-peak and triple-peak structures are visible in different Bartels rotations

Wavelet Analysis of Proton Fluxes in 2016

To study the recurrent time variations in the daily proton fluxes, a **wavelet time-frequency** technique was used.

To show the strength of the periodicity, **the normalized power** is defined by the power divided by **the variance** of the time series.

Periods of 9, 13.5, and 27 days are observed in 2016.

The strength of all three periodicities changes with time and rigidity.

In particular, shorter periods of 9 and 13.5 days, when present, are more visible at 6 GV and 20 GV compared to 1 GV.

Periodicities of Daily Proton Fluxes in 2016

Highlight #1

Unexpectedly, the strength of 9day and 13.5-day periodicities increases with increasing rigidity up to ~10 GV and ~20 GV, respectively. Then the strength decreases with increasing rigidity up to 100 GV.

Thus, the AMS results do not support the general conclusion that the strength of the periodicities always decreases with increasing rigidity

Phys. Rev. Lett. 127, 271102 (2021)

Rigidity Dependence of 9-day, 13.5-day, and 27-day periods of protons

Shaded areas are the rigidity intervals where the periodicity is prominent

Cosmic Ray Periodicities and the Rotation of the Sun

Coronal Holes are sources of high speed solar wind affecting Earth. The rotation of the Sun causes multiple periods in the flux:

(May 10, 2016-Jun 06, 2016) Image taken by Solar Dynamics Observatory (SDO), NASA

AMS Daily Helium Flux

Periodicities of Daily Helium Fluxes in 2016

Similar periodic structures are observed for helium.

The AMS results do not support the general conclusion that the strength of the periodicities always decreases with increasing rigidity

Phys. Rev. Lett. 128, 231102 (2022)

Daily Φ_{He} , Φ_p and Φ_{He}/Φ_p

 $\Phi_{\rm He}/\Phi_p$ exhibits variations on multiple timescales

16

Daily Φ_{He} , Φ_p and Φ_{He}/Φ_p

Below ~7 GV, $\Phi_{\rm He}$ exhibits larger time variations than Φ_p

A hysteresis between $\Phi_{\rm He}/\Phi_p$ and $\Phi_{\rm He}$

At low rigidity the modulation of the helium to proton flux ratio is different before and after the solar maximum in 2014

A hysteresis between $\Phi_{\rm He}/\Phi_p$ and $\Phi_{\rm He}$

At low rigidity the modulation of the helium to proton flux ratio is different before and after the solar maximum in 2014

AMS Daily Electron Flux

AMS Daily Electron and Proton Fluxes

The time-dependent behavior of the Φ_{e^-} and Φ_{p} is distinctly different

Non recurrent variations of Electron and Proton Fluxes

During lower solar activity in 2011 and 2017, a difference between the short-term evolution of electrons and protons is observed, while during the solar maximum in 2015 the difference vanishes.

These observations indicate a charge-sign dependence in nonrecurrent solar modulation.

Periodicities of Daily Electron Fluxes

The rigidity dependence of the electron periodicities is different from that of protons

In the second half of 2011 the strength of the 27-day period of electrons is greater than that of protons.

In the first half of 2017 the strength of the 27-day period of electrons is less than that of protons.

A Hysteresis between Φ_{e^-} and Φ_{p}

To assess the significance of the hysteresis we study, at different solar conditions, the values of Φ_p at the same Φ_e -

Highlight #3

The hysteresis is observed with a significance > 6σ at rigiditiesbelow 8.5 GVPhys. Rev. Lett. 130, 161001 (2023)

24

Structures in the Electron-Proton Hysteresis

Significant structures in the electron-proton hysteresis are observed corresponding to sharp variations in the fluxes

AMS Publications on Cosmic Rays in the Heliosphere

- 1) PRL <u>121</u>, 051101 (2018) Monthly p, He
- 2) PRL <u>121</u>, 051102 (2018) Monthly e+, e- Editors' Suggestion
- 3) PRL <u>127</u>, 271102 (2021) Daily p
- 4) PRL <u>128</u>, 231102 (2022) Daily He
- 5) PRL <u>130</u>, 161001 (2023) Daily e-
- 6) To be submitted to PRL Daily e+
- 7) To be submitted to PRL Cosmic antiprotons

Editors' Suggestion, Featured in Physics, Viewpoint in *Physics (APS announcement)*

AMS Publications on Cosmic Rays in the Heliosphere

PHYSICAL REVIEW LETTERS 127, 271102 (2021)

Periodicities in the Daily Proton Fluxes from 2011 to 2019 Measured by the Alpha Magnetic Spectrometer on the International Space Station from 1 to 100 GV

PHYSICAL REVIEW LETTERS 128, 231102 (2022)

Properties of Daily Helium Fluxes

PHYSICAL REVIEW LETTERS 130, 161001 (2023)

Editors' Suggestion

Featured in Physics

Temporal Structures in Electron Spectra and Charge Sign Effects in Galactic Cosmic Rays

AMS Daily Data: 1) Tables from PRL Supplemental Material

	TABI	LE S1: May	20, 2011.		
Rigidity [GV]	Φ_p	$\sigma_{ m stat.}$	$\sigma_{ m time}$	$\sigma_{\rm syst.}$	
1.00 - 1.16	(9.998	0.157	0.100	0.293)	$\times 10^2$
1.16 - 1.33	(9.749	0.075	0.071	0.222)	$ imes 10^2$
1.33 - 1.51	(9.144	0.067	0.050	0.171)	$ imes 10^2$
1.51 - 1.71	(8.404	0.058	0.038	0.135)	$ imes 10^2$
1.71 - 1.92	(7.394	0.049	0.031	0.107)	$ imes 10^2$
1.92 - 2.15	(6.302	0.041	0.025	0.084)	$ imes 10^2$
2.15 - 2.40	(5.489	0.036	0.022	0.069)	$ imes 10^2$
2.40 - 2.67	(4.628	0.030	0.018	0.056)	$ imes 10^2$
2.67 - 2.97	(3.927	0.025	0.015	0.046)	$ imes 10^2$
2.97 - 3.29	(3.278	0.021	0.012	0.037)	$ imes 10^2$
3.29 - 3.64	(2.749	0.018	0.010	0.031)	$ imes 10^2$
3.64 - 4.02	(2.249	0.014	0.008	0.025)	$ imes 10^2$
4.02 - 4.43	(1.844	0.011	0.007	0.020)	$ imes 10^2$
4.43 - 4.88	(1.500	0.009	0.006	0.016)	$ imes 10^2$
4.88 - 5.37	(1.218	0.008	0.005	0.013)	$ imes 10^2$
5.37 - 5.90	(9.897	0.063	0.037	0.108)	$ imes 10^1$
5.90 - 6.47	(7.975)	0.052	0.030	0.087)	$ imes 10^1$
6.47 - 7.09	(6.481	0.042	0.024	0.071)	$ imes 10^1$
7.09 - 7.76	(5.183	0.035	0.019	0.057)	$ imes 10^1$
7.76 - 8.48	(4.123	0.029	0.015	0.046)	$ imes 10^1$
8.48 - 9.26	(3.392	0.025	0.013	0.038)	$ imes 10^1$
9.26 - 10.1	(2.669	0.021	0.010	0.030)	$ imes 10^1$

Example #1: daily proton flux

2824 tables with daily measurements from May 20, 2011 to October 29, 2019

In the following tables we present the daily proton flux Φ_p as a function of rigidity at the top of AMS. The fluxes are in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$. The errors include statistics $(\sigma_{\text{stat.}})$, time-dependent systematic errors (σ_{time}) and the total systematic error $(\sigma_{\text{syst.}})$. Contributions to the time-dependent systematic errors (σ_{time}) are from: the trigger efficiency and the reconstruction efficiencies. Contributions to the total systematic error $(\sigma_{\text{syst.}})$ are from: the time-dependent systematic error, the background evaluation, the geomagnetic cutoff, the acceptance calculation, the rigidity resolution function, and the absolute rigidity scale.

Similar tables for daily Helium flux and for the He/p flux ratio

AMS Daily Data: 1) Tables from PRL Supplemental Material

These tables in pdf format are available at

PRL webpage

AMS-02 webpage

Go to https://ams02.space/publications

Published on June 10, 2022

Properties of Daily Helium Fluxes

Phys. Rev. Lett. 128, 231102 (2022) d, Citations: 6d, View supplemental material and data

Properties of Daily Helium Fluxes

Phys. Rev. Lett. **128**, 231102 (2022)¹³ Published on: June 10, 2022

Abstract

We present the precision measurement of 2824 daily helium fluxes in cosmic rays from May 20, 2011 to October 29, 201 based on 7.6×10^8 helium nuclei collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Spac to proton flux ratio exhibit variations on multiple timescales. In nearly all the time intervals from 2014 to 2018, we obse a period of 27 days. Shorter periods of 9 days and 13.5 days are observed in 2016. The strength of all three periodicities entire time period, we found that below ~ 7 GV the helium flux exhibits larger time variations than the proton flux, and ratio is time independent. Remarkably, below 2.4 GV a hysteresis between the helium to proton flux ratio and the heliu the 7σ level. This shows that at low rigidity the modulation of the helium to proton flux ratio is different before and after the formation of the helium to proton flux ratio is different before and after the formation of the helium to proton flux ratio is different before and after the formation of the helium to proton flux ratio is different before and after the formation of the helium to proton flux ratio is different before and after the formation of the helium to proton flux ratio is different before and after the formation of the helium to proton flux ratio is different before and after the formation of the helium to proton flux ratio is different before and after the formation of the helium to proton flux ratio is different before and after the formation of the helium to proton flux ratio is different before and after the formation of the helium to proton flux ratio is different before and after the formation of the helium to proton flux ratio is different before and after the formation of the helium to proton flux ratio is different before and after the formation of the helium to proton flux ratio is different before and after the formation of the formation of the helium to proton flux ratio is different before and after the formation of the helium to proton flux ratio is different before

Supplemental Material

SM-Daily-He-REV.pdf

AMS Daily Data: 2) Tables in CSV format

In the previous AMS-02 webpage...

AMS-02 webpage

Go to https://ams02.space/publications

Published on June 10, 2022 Properties of Daily Helium Fluxes

Phys. Rev. Lett. **128**, 231102 (2022)^{ad}, Citations: **6**^{ad}, View supplemental material and data

Scroll down

Supp	lementa	l Materia

SM-Daily-He-REV.pdf

Download AMS Data

Table-S1-S2824

Download the table

Table of *Properties of Daily Helium Fluxes*

YYYY-MM-DD	Rigidity	Flux	σ_{stat}	σ_{time}	σ_{sys}
2011-05-20	,1.71 <u>,</u> 1. <u>9</u> 2,	8.770e1	0. <u>1</u> 80e1	0.046e1	0.176e1
2011-05-20	,1.92,2.15,	8.071e1	0.153e1	0.040e1	0.128e1
2011-05-20	,2.15,2.40	7.360e1	0.134e1	0.036e1	0.101e1
2011-05-20	,2.40,2.67	6.613e1	0.113e1	0.031e1	0.083e1
2011-05-20	,2.67,2.97	5.754e1	0.094e1	0.026e1	0.069e1
2011-05-20	,2.97,3.29	4.802e1	0.081e1	0.020e1	0.056e1
2011-05-20	,3.29,3.64	,4.218e1	0.070e1	0.018e1	0.049e1
2011-05-20	,3.64,4.02,	3.556e1	0.056e1	0.015e1	0.041e1
2011-05-20	,4.02,4.43	2.966e1	0.045e1	0.012e1	0.034e1
2011-05-20	,4.43,4.88	2.474e1	0.038e1	0.010e1	,0.028e1

In the previous AMS-02 webpage...

AMS-02 webpage

Go to https://ams02.space/publications

Published on June 10, 2022

Properties of Daily Helium Fluxes

Phys. Rev. Lett. **128**, 231102 (2022)^a, Citations: **6**^a, View supplemental material and data

Scroll down

AMS Data at Cosmic-ray Database (LPSC/IN2P3/CNRS)

Welcome	Caveats/Tips	Data extraction	Experiments/Data	REST/CRDB.py	Solar modulation	Submit data	Useful links	Admin
	-Flux or ratio	selection				F	Periodic table of eleme	nts
	Single quantit	y (with auto-completion s: B/C; ¹⁰ Be/Be; ¹ H; ¹ H-bar/ ¹ H	n) I ; e ⁺ /e ⁻ +e ⁺ ; AllParticles; DipolePhas	or •;	omma-separated list	Particle	species to s	tudy
	-Refine searc	ch criteria						
		_	Energy	y axis: R (rigidiy)	-	e Fluxes vs	rigidity	
		LI Additior	nergy axis conversion (3 le nal data from combos (3 le	evels): 0: no conve evels): 0: no comb	ersion (native data only) oo (native data only) 🗸 🤨	Uše nativ	e data only	
			Time s	series: Show only	time series 🗸 🗿 Incli	ude data fro	om average	flux or from time
			Plot vs time (instead	of R): 🛛 🖉 🔮 🕇	ick to plot fluxe	s vs time in	stead of rig	idity
			Flux rescaling (Flux * <	<e>^a):</e>	0			
			Restrict energy r	range: from 2.97	GV to 3.29 GV 🤨 YO	u can select	the rigidity	y bin to be show <mark>n</mark>
			Restrict time int	erval: from	to 🧾 😢			
		Restrict t	to sub-exps (w/o time inte	erval): AMS			ct to AMS (c	or other
		Ex	ported Solar modulation v	alues: [Ghe17]~	0	experi	ment) data	
				Extract selection				

https://lpsc.in2p3.fr/crdb

AMS Data at Cosmic-ray Database (LPSC/IN2P3/CNRS)

AMS Data at Cosmic-ray Database (LPSC/IN2P3/CNRS)

#/	AMS02																	athly flux
#	Qty	<t></t>	tlo	tup	У	ystat_lo	ystat_up	ysy	st_lo	ysyst	_up	yerrtot	lo	yerrtot_	up			itiny nux
Н	1311	847200	116640	90 116 6	5400	3.231000	e+02 8.000	000e-	01 8.0	00000e	-01 !	5.500000	≥+00	5.500000	e+00 5.	.557877e	+00 5.55	57877e+00
Н	1311	155999	43199	43200	3.27	78000e+02	2.100000e	+00 2	.10000	0e+00	3.70	0000e+00	3.76	00000e+00	4.2544	109e+00	4.254409	9e+00
н	1311	242399	43199	43200	3.25	57000e+02	1.800000e	+00 1	.80000	0e+00	3.60	0000e+00	3.60	00000e+00	4.0249	922e+00	4.024922	2e+00
н	1311	328799	43199	43200	3.20	03000e+02	1.800000e	+00 1	.80000	0e+00	3.50	0000e+00	3.50	00000e+00	3.9357	734e+00	3.935734	le+00
н	1311	415199	43199	43200	3.27	73000e+02	1.500000e	+00 1	.50000	0e+00	3.60	0000e+00	3.60	00000e+00	3.9000	00e+00	3.90000	0e+00
Н	1311	501599	43199	43200	3.28	31000e+02	2.000000e	+00 2	.00000	0e+00	3.60	0000e+00	3.60	00000e+00	4.1182	252e+00	4.118252	2e+00
н	1311	587999	43199	43200	3.27	79000e+02	1.600000e	+00 1	.60000	0e+00	3.70	0000e+00	3.76	00000e+00	4.0311	L29e+00	4.031129	9e+00
н	1311	674399	43199	43200	3.25	56000e+02	1.700000e	+00 1	.70000	0e+00	3.70	0000e+00	3.70	00000e+00	4.0718	355e+00	4.071855	5e+00
н	1311	760799	43199	43200	3.24	14000e+02	1.800000e	+00 1	.80000	0e+00	3.70	0000e+00	3.76	00000e+00	4.1146	508e+00	4.114608	3e+00
н	1311	847199	43199	43200	3.22	22000e+02	1.700000e	+00 1	.70000	0e+00	3.70	0000e+00	3.76	00000e+00	4.0718	355e+00	4.071855	5e+00
н	1311	933599	43199	43200	3.13	32000e+02	1.800000e	+00 1	.80000	0e+00	3.60	0000e+00	3.60	00000e+00	4.0249	922e+00	4.024922	2e+00
н	1312	019999	43199	43200	3.15	58000e+02	1.500000e	+00 1	.50000	0e+00	3.70	0000e+00	3.76	00000e+00	3.9924	193e+00	3.992493	3e+00
Н	1312	106399	43199	43200	3.15	58000e+02	1.400000e	+00 1	.40000	0e+00	3.70	0000e+00	3.76	30000e+00	3.9566	008e+00	3.956008	3e+00

<t> (Unixtime)

$$\sigma_{sta}$$

 σ_{sys}

Daily flux $\sigma_{tot} = \sqrt{\sigma_{stat}^2 + \sigma_{sys}^2}$

AMS Data at Cosmic-ray Database (LPSC/IN2P3/CNRS)

arXiv > astro-ph > arXiv:2306.08901

Help | Ad

Astrophysics > High Energy Astrophysical Phenomena

[Submitted on 15 Jun 2023]

A cosmic-ray database update: CRDB v4.1

D. Maurin, M. Ahlers, H. Dembinski, A. Haungs, P.-S. Mangeard, F. Melot, P. Mertsch, D. Wochele, J. Wochele

The cosmic-ray database, CRDB, has been gathering cosmic-ray data for the community since 2013. We present a new release, CRDV v4.1, providing many new quantities and data sets, with several improvements made on the code and web interface, and with new visualisation tools. CRDB relies on the mySQL database management system, jquery and tsorter libraries for queries and sorting, and php web pages and ajax protocol for displays. A REST interface enables user queries from command line or scripts. A new (pip-installable) CRDB python library is developed and extensive jupyter notebook examples are provided. This release contains cosmic-ray dipole anisotropy data, high-energy \bar{p}/p upper limits, some unpublished LEE and AESOP lepton time series, many more ultra-high energy data, and a few missing old data sets. It also includes high-precision data from the last three years, in particular the hundreds of thousands AMS-02 and PAMELA data time series (time-dependent plots are now enabled).All these data are shown in a gallery of plots, which can be easily reproduced from the public notebook examples. CRDB contains 314902 data points from 487 publications, in 4092 sub-experiments from 126 experiments.

Check more details and other measurements on https://arxiv.org/pdf/2306.08901.pdf

AMS Data at Cosmic-ray Database @ SSDC (ASI)

COSMIC RAY Database Database for Charged Cosmic Ray measurements.

https://tools.ssdc.asi.it/CosmicRays/

Login Feedback and contacts

Version 3.2

Looking for cosmic ray data?

The present Cosmic Ray DataBase (CRDB) provides access to published data from missions dedicated to charged cosmic-rays measurements.

Have a look to our current (not comprehensive but in expansion) data-set here!

Data are organized in a SQL database and can be searched through **queries** based on particle species, measurement of interest and/or name of the mission. A refined search is also available.

Query results are accessible through a table, ready to be plotted, exported and downloaded in various formats. The set of returned information comprehends the published data points with associated uncertainties, and some meta-data. When, aside original data, more information are provided (e.g. the corresponding data obtained after some manipulation, as energy-rigidity conversion, change of units or similar), this is reported in the output file. Please, always consult the original publication before using the data. Feel free to contact us for any comment, guery, suggestion, for adding new data or signalling any possible inaccuracy.

Thank you for citing us when using the CRDB for your works!

Currently, only p and He daily fluxes are available in CSV format

C Most recent time-dependent AMS data available here!

AMS Data at Cosmic-ray Database @ SSDC (ASI)

Particle	p	Particle	species to stud	Y Experimentary AMS-	nents: 02 -	Select data from Antersial datasets:				
Refined Sea	rch:	FIUX VS TII	me							
Rigidity:										
from 1		to	60.3		GV					
					_					
				SEARCH	RESET					
Plot Selected	Select all items	Select none	Channell Under California							
	L		Show/Hide Columns							
Select 🎼 Part	icle 🕼 Mission	Rigidity ↓† (GV)	Rigidity Min Jî (GV) Jî	Rigidity Max (GV)	Select rigidity i	nterval to be dis	played Ouput File I			
Select 🏥 Part	icle Jî Mission AMS-02	Rigidity ↓î (GV)	Snow/Hide Columns Rigidity Min 10	Rigidity Max (GV) 1.16	Select rigidity i Reference Link PRL 121 (2018) 051101	nterval to be dis It Link Notes It Monthly data	played Ouput File 1 p_AMS_PRL2018_000.xml			
Select 🎼 Part	icle 1 Mission AMS-02 AMS-02	Rigidity Ĵ↑ (GV)	Snow/Hide Columns Rigidity Min (GV) 11 1.0 1.16	Rigidity Max (GV) 1.16 1.33	Select rigidity i Reference Link PRL 121 (2018) 051101 PRL 121 (2018) 051101	nterval to be dis It Link Notes It Monthly data	played Ouput File It p_AMS_PRL2018_000.xml p_AMS_PRL2018_001.xml			

AMS Data at Cosmic-ray Database @ SSDC (ASI)

AMS Data at Cosmic-ray Database @ SSDC (ASI)

<pre>GraphTitle: p AMS-02 PRL (2018); R=(1.0,1.16); XLabel: time (UTC) YLabel: flux ((m^{2} s sr GV)^{-1}) Columns: X, XErrorLow, XErrorHigh, Y, YErrorLow, YErrorHigh 1.306584e+09 0.000000e+00 0.000000e+00 9.531000e+02 4.615246e+01 4.615246e+01 1.308917e+09 0.000000e+00 0.000000e+00 8.981000e+02 4.088276e+01 4.088276e+01 1.311250e+09 0.000000e+00 0.000000e+00 8.940000e+02 4.103084e+01 4.103084e+01 1.315515e+09 0.000000e+00 0.000000e+00 8.726000e+02 3.942436e+01 3.942436e+01 1.315915e+09 0.000000e+00 0.000000e+00 8.827000e+02 3.944617e+01 3.944617e+01 1.312581e+09 0.000000e+00 0.000000e+00 7.898000e+02 3.579679e+01 1.320581e+09 0.000000e+00 0.000000e+00 8.450000e+02 3.817814e+01 3.817814e+01 1.322914e+09 0.000000e+00 8.982000e+02 3.939353e+01 3.939353e+01 1.325246e+09 0.000000e+00 8.982000e+02 3.875061e+01 3.875061e+01 1.327579e+09 0.000000e+00 8.000000e+00 8.394000e+02 3.751386e+01</pre>	# Data from SSDC cosmic rays database www # File generated today 20230625 # Errors may contain statistic and system # Fluxes are multiplied by a power of Ene # Horizontal errors usually are not uncer #	u.ssdc.asi.it natic dependin ergy (or Rigid rtanties of th	g on the options ity) if the opti e measurement bu	s set when drawing th ion is set when drawi ut correspond to binn	e graph ng the graph ing. See publication.
# Columns: X, XErrorLow, XErrorHigh, Y, YErrorLow, YErrorHigh 1.306584e+09 0.00000e+00 0.00000e+00 9.531000e+02 4.615246e+01 4.615246e+01 1.308917e+09 0.00000e+00 0.00000e+00 8.981000e+02 4.088276e+01 4.088276e+01 1.31250e+09 0.00000e+00 0.00000e+00 8.981000e+02 4.103084e+01 4.103084e+01 1.311250e+09 0.00000e+00 0.00000e+00 8.94000e+02 3.942436e+01 3.942436e+01 1.315915e+09 0.00000e+00 0.00000e+00 8.82700e+02 3.944617e+01 3.944617e+01 1.318248e+09 0.00000e+00 0.00000e+00 8.82700e+02 3.579679e+01 3.579679e+01 1.320581e+09 0.00000e+00 0.00000e+00 8.450000e+02 3.939353e+01 3.939353e+01 1.325246e+09 0.00000e+00 0.00000e+00 8.982000e+02 3.875061e+01 3.875061e+01 1.327579e+09 0.00000e+00 0.00000e+00 8.648000e+02 3.751386e+01 3.751386e+01	<pre># GraphTitle: p AMS-02 PRL (2018); R=(1.0 # XLabel: time (UTC) # YLabel: flux ((m^{2} s sr GV)^{-1})</pre>	9,1.16);			Monthly data
	<pre># Columns: X, XErrorLow, XErrorHigh, Y, Y L.306584e+09 0.000000e+00 0.000000e+00 L.308917e+09 0.000000e+00 0.000000e+00 L.311250e+09 0.000000e+00 0.000000e+00 L.313582e+09 0.000000e+00 0.000000e+00 L.315915e+09 0.000000e+00 0.000000e+00 L.320581e+09 0.000000e+00 0.000000e+00 L.322914e+09 0.000000e+00 0.000000e+00 L.325246e+09 0.00000e+00 0.000000e+00 L.327579e+09 0.00000e+00 0.000000e+00 L.329912e+09 0.00000e+00 0.000000e+00</pre>	<pre>'ErrorLow, YEr 9.531000e+02 8.981000e+02 8.940000e+02 8.726000e+02 8.827000e+02 7.898000e+02 8.450000e+02 8.790000e+02 8.982000e+02 8.648000e+02 8.394000e+02</pre>	rorHigh 4.615246e+01 4. 4.088276e+01 4. 4.103084e+01 4. 3.942436e+01 3. 3.944617e+01 3. 3.579679e+01 3. 3.817814e+01 3. 3.939353e+01 3. 4.012044e+01 4. 3.875061e+01 3. 3.751386e+01 3.	.615246e+01 .088276e+01 .103084e+01 .942436e+01 .944617e+01 .579679e+01 .817814e+01 .939353e+01 .012044e+01 .875061e+01 .751386e+01	

(Unixtime)

Flux

 $\sigma_{\rm tot} = \sqrt{\sigma_{stat}^2 + \sigma_{sys}^2}$

Thanks to its large acceptance, identification capabilities and long-term mission in space, AMS is a unique experiment to carry out precise studies on the time variability of the individual species in cosmic rays

By 2030, AMS will cover two solar cycles, and more unexpected results are yet to come