

B_c^+ Production at LHCb

And what it can tell us about multi-parton interactions

Ulrik Egede, **Tom Hadavizadeh**, Jake Lane, Minni Singla, Peter Skands, Mika Vesterinen, Eliot Walton

> 22nd June 2023 Topical B&Q meeting on B_c^+ mesons

Introduction

- Today I will discuss some recent work studying B_c^+ production at hadron colliders
- Predictions of B_c^+ production using **Pythia** are guiding studies into different production mechanisms

Outline:

- Exisiting production measurements
- Predictions and simulations of B_c^+ at hadron colliders
- B_c^+ formation in hadronisation
- Future directions

 $B_c^+ \to J/\psi \pi^+$

History of B_c^+ production measurements

[LHCb-PAPER-2012-028

 LHCb data BCVEGPY

15

 $\tilde{p}_{\rm T} ({\rm GeV}/c)^2$

 $R(p_{\rm T})~(\%)$

0.6

5

10

Measurements of the B_c^+ production cross section have been performed at LHCb using different final states

 $R = \frac{\sigma(B_c^+)}{\sigma(B^+)} \frac{BF(B_c^+ \to J/\psi\pi^+)}{BF(B^+ \to J/\psi K^+)}$

Tom Hadavizadeh

THES B_c^+ production predictions **MONASHUniversity**

- To compare these measurements with predictions, we must assume branching fractions for the B_c^+ decays
 - **Absolute** branching fractions haven't ever been measured

[LHCb-PAPER-2019-033]

Ref.\Mode	$J/\psi \mu^- \overline{\nu}$
[15]	6.4
[16]	
[17]	1.4
[18]	7.5
[19]	1.9
[20]	2.3
[21]	2.7
[22]	1.6
[23]	1.7
[24]	1.7
[25]	1.9
[26]	2.3
[27]	2.2
[28]	2.6
[29]	2.5
[30]	1.3
[31]	1.4
[32]	1.5
[33]	1.9
[34]	2.2

-

There is a significant range in the available theoretical predictions, making it harder to draw firm conclusions

So whilst current measurements are broadly in agreement with some theoretical predictions, there are large uncertainties

4

- At LHCb we simulate B_c^+ production using the hard matrix element calculator **BcVegPy**
- This simulates the dominate contributions to B_c^+ production, e.g. gluon-gluon fusion $gg \rightarrow B_c^+ b\bar{c}$

- This process is then interfaced with **Pythia**, an event generator
 - This adds the underlying event and performs hadronisation

This makes **two** assumptions:

- 1. That both the \bar{b} and c were produced in the same parton-parton interaction
- 2. That this process was the hardest interaction in the event

Recent developments MONASH University

- In general it would be preferable to have a **fully inclusive simulation** sample of B_c^+ mesons from **minimum bias** events
 - Rather than assuming it's produced in a specific hard interaction
- This is possible with **Pythia**, but **extremely slow**
 - As in nature, it is rare to produce both \bar{b} and c quarks that form a single hadron
- Recent developments in **Pythia** are helping to speed up the production of heavy quarks in inclusive events
 - Further details in the back-up slides

Recent developments MONASH University

Aim: Produce inclusive samples of B_c^+ including all contributions, not just production in the hard scatter

parton interactions

 Production during hard interaction

LHCb

- Production during parton showers
- Production during hadronisation

Double parton scattering

Pythia predictions

😹 MONASH University

[arxiv:2205.15681]

- Inclusive samples produced with Pythia show a significant contribution from **DPS**
- There is some disagreement with the absolute cross-sections predicted by **Pythia** vs. **BcVegPy**

Pythia currently predicts **as much as 90%** of B_c^+ mesons produced in DPS

Disentangling production

- Measuring the **absolute cross section** c
 - Instead we can deduce if DPS is pres

The different behaviour in events with more parton-parton interactions can distinguish the two

SPSDPS $\frac{\sigma(B_c^+)}{\sigma(B^+)} \propto 1$ $\frac{\sigma(B_c^+)}{\sigma(B^+)} \propto (N-1)$

We can measure the differential cross section ratio to identify the production mechanism

MONASH University

Future studies

- Studies of the rest of the underlying event containing B_c^+ mesons can provide more information
 - **Quantitative** measurements of DPS vs. SPS contributions can provide insight into different models of **Colour Reconnection** in hadronisation
 - Production of B_c^+ mesons in jets can help us understand production in parton showers vs. production in the hardest interaction

Associated production of B_c^+ and other heavy hadrons can provide complementary information

Conclusions

- Measurements of B_c^+ meson production are can provide important information about the different production mechanisms
- Absolute production cross sections are subject to theoretical uncertainties
 - Multiplicity dependence of B_c^+ vs. B^+ cross section ratio can disentangle production mechanisms
- These methods apply more broadly to other types of doubly heavy hadrons
- The results will help inform models of QCD in hadronisation and parton showers

Back up

Heavy quarks and Pythia

 In proton-proton collisions there are three ways heavy quarks are produced via perturbative QCD

- The first two involve heavy quarks in the hard process, so can be simulated efficiently
 - Heavy quarks in produced in *parton showers* or in additional parton-parton interactions require inclusive samples

Userhooks

Userhooks

Inbuilt routines that allows users to inspect the event and *veto* if required

The event can be inspected at multiple stages

 We've created Userhooks to veto events that we know don't have heavy quarks and can't produce one

This saves time evolving and hadronising events we later discard

- We don't modify any probabilities so in principle this doesn't bias the generated samples

How can we make Pythia quicker?

Speed gains

 These user hooks have significantly reduced generation time for singly- and doubly-heavy hadrons

Gain is largest for b hadrons because c mass is closer to hadronisation scale

Some heavy flavour is missed

MONASH University

Colour reconnection

