

Black Box

Building and Revising Scientific Models

resources.perimeterinstitute.ca

Predict, Observe, Explain Demonstration: Uniform Circular Motion This demonstration utilizes a typical uniform circular motion apparatus to introduce students to the concept of dark matter.

Hands-on Demonstrations: Gravitational Lensing These demonstrations use simple objects to model gravitational lensing.

Activity 1: Video Summary

A set of discussion questions that review the content of the video.

Activity 2: Key Concepts

A question sheet that allows students to dig deeper into the material both numerically and conceptually.

Activity 3: Gravity and Orbital Motion

An activity where students use stretchy spacetime fabric and a variety of balls to model orbital motion.

Activity 4: Dark Matter within a Galaxy

Students use real data to explore the conflict between what is expected and what is observed.

Activity 5: Advanced Mathematical Analysis

An enrichment/extension activity for stronger students.

Activity 6: Dark Matter Lab

Students use a typical uniform circular motion apparatus to explore the connection between orbital speed and central force.

Uniform Circular Motion Activity

Uniform Circular Motion Activity

Objective:

Determine the mass of an unknown item.

- 1. Collect data for one mass per group.
- 2. Plot a graph of speed² vs mass on a collaborative spreadsheet.

Uniform Circular Motion Activity

Collaborative version:

- 1. Set radius = 60 cm
- 2. Use assigned masses
- 3. Record period for 10 orbits
- 4. Compare results
- 5. Report results

Uniform Circular Motion Results

# of washers	10 Orbits (s)
8	
10	
12	
14	
16	

How is the orbital speed related to the mass of the washers?

Uniform Circular Motion Results

of washers vs speed^2

Connecting standard classroom physics to Cutting-Edge Dark Matter

Vera Rubin's Discovery

Orbital Speed
Depends on the
Mass of the Central
Object

$$M = \frac{v^2 r}{G}$$

Extend this to galaxies

Triangulum is More Massive Than it Looks

Old View

New View

0.0001 K difference between hot and cold!

Gravitational Lensing

Competing Theories For Dark Matter

Particle that hasn't been discovered yet

How to Look for Dark Matter Particles

Direct detection: wait for it to hit a detector

Indirect detection: look for other signatures

Particle colliders: make it

LUX- Large Underground Xenon Detector

XENON1T most sensitive measurement yet (2018)

XENONnT – (2023)

PANDAX- 4T (2021)

FERMI

background, says Fornasa. **Matter Particles** E_{CM}~100GeV

LHC

Empty-Handed?

Modified Gravity Theories

Sterile Neutrinos

all known physics
$$\Psi = \int e^{\frac{i}{h} \int \left(\frac{R}{16\pi G} - \frac{1}{4}F^2 + \overline{\psi}i \not\!\!D\psi - \lambda H \overline{\psi}\psi + |DH|^2 - V(H)\right)}$$
 include neutrino masses via $H \to H + M$
$$\psi = (q_L, u_R, d_R, l_L, e_R, v_R) \times 3$$
 dark matter? Boyle, Finn, NT 2018

Dark Matter

Works well on cosmological scales

- Does not work well in detail for galaxy rotation curves (small scale problems)
- We haven't found it

Modified Gravity

Predicts galaxy rotation curves very well

 Does not predict well or ignores the data from CMB or gravitational wave data

Stalemate

Current Status of Dark Matter

Thank You! - Ευχαριστώ!!

www.perimeterinstitute.ca

Olga Michalopoulos omichalopoulos@gmail.com

Laura Pankratz
laurapankratz@uniserve.com

