
Oι ανιχνευτες σωματιδιων του LHC
ειναι απο τις εντυπωσιακοτερες

μηχανες...
(LHC is the most impressive machine

ever built)

...και ισως προσφερονται σαν πιθανες ιδεες για μετρησεις με τους
μαθητες σας and will be possibly a great way to attract students in

STEM activities)
(https://www.mycloud.ch/s/S00CA3ADC5EB87832A4A2D2BF2BFB58126F8B438C91)

30/8/2023
Α. Τσιρου (ΕΚΠΑ), Piero Giorgio Verdini

(INFN Pisa)
1

https://www.mycloud.ch/s/S00CA3ADC5EB87832A4A2D2BF2BFB58126F8B438C91

30/8/2023
Α. Τσιρου (ΕΚΠΑ), Piero Giorgio Verdini

(INFN Pisa)
2

https://www.mycloud.ch/s/S00CA3ADC5EB87832A4A2D2BF2BFB58126F8B438C91

The ones that have their own laptops must install the following(the CERN laptops have
them, but then they stay at CERN…):
Arduino IDE 2.1.1

Arduino IDE libraries:

AHT20 1.0.1 by Dvarrel (https://github.com/dvarrel/AHT20)

BMP180MI 1.0.1 by Gregor Christandl https://bitbucket.org/christandlg/bmp180mi

LM75A Arduino Library 1.0.1 by M2M Solutions AB (https://github.com/m2m-

solutions/M2M_LM75A)

https://www.mycloud.ch/s/S00CA3ADC5EB87832A4A2D2BF2BFB58126F8B438C91
https://github.com/dvarrel/AHT20
https://bitbucket.org/christandlg/bmp180mi
https://github.com/m2m-solutions/M2M_LM75A

30/8/2023
Α. Τσιρου (ΕΚΠΑ), Piero Giorgio Verdini

(INFN Pisa)
3

Το CERN ειναι το μερος που «παιρνουν σαρκα και οστα» τρια πραγματα:
1. Γινεται βασικη ερευνα για να επιβεβαιωσει η απορριψει τα μοντελα που

περιγραφουν το συμπαν και την εξελιξη του. Η ερευνα αυτη απαιτει την
δημιουργια, συντηρηση, και λειτουργια οργανων που μπορουν να δωσουν
δεδομενα σε στατιστικα ικανες ποσοτητες για τις παραπανω μελετες.

2. Η δημιουργια/εξελιξη και χρηση τεχνολογιας ειναι δεδομενη και η εκφραση
«τεχνολογια αιχμης » ειναι σχεδον κενη διοτι το προσωπικο του CERN δημι-
ουργει διαρκως τεχνολογια για να κανει δυνατη την πραγματοποιηση του
πρωτου στοχου. Η τεχνολογια αυτη εχει ξεκιναει απο το πραγματικο βαρυ
hardware (τροποι χτησιματος και στηριξης) μεχρι το πιο αφαιρετικο software
(ποιος δεν ξερει το WEB!).

3. Οι ανθρωποι δουλευουν πραγματικα μαζι και αποδεικνυουν, με συγχωρειτε
για την παραφραση το:

«Εξ ανθρὠπου τα χείρω...Kαι εξ ανθρὠπου τα κρείττω»
Ετσι, ειναι το μερος που οι νεοι ανθρωποι λατρευουν να δουλευουν ΜΑΖΙ,

και ειναι το μερος που λατρευει τους νεους ανθρωπους.

Γι' αυτό εισαστε και ειμαστε εδω.....

30/8/2023
Α. Τσιρου (ΕΚΠΑ), Piero Giorgio Verdini

(INFN Pisa)
4

ALICE

CMS

ATLAS

LHCb
15m

21m

14’000 t

W
h

at
 d

o
 t

h
e

 d
et

e
ct

o
rs

 “
d

o
”:

1
. T

h
ey

 f
o

rc
e

 t
h

e
 p

ar
ti

cl
e

s
cr

e
at

ed
 d

u
ri

n
g

co
lli

si
o

n
s

to
 in

te
ra

ct

w
it

h
 m

at
te

r
lo

si
n

g
e

n
e

rg
y

vi
a

d
if

fe
re

n
t,

 w
e

ll
p

ar
am

et
ri

ze
d

, p
ro

ce
ss

e
s.

2
.

Th
ey

 r
e

co
rd

, p
ra

ct
ic

al
ly

 t
ak

in
g

p
ic

tu
re

s
o

f
th

e
 w

h
o

le
 p

ro
ce

ss
.

3
. T

h
e

ir
 c

o
n

st
ru

ct
io

n
 a

n
d

 o
p

e
ra

ti
o

n
 is

 s
u

ch
 t

h
at

 t
h

ey
 c

an
 p

e
rf

o
rm

ad

e
q

u
at

el
y

fo
r

p
ro

vi
d

in
g

th
e

 s
ta

ti
st

ic
s

an
d

 r
e

so
lu

ti
o

n
 r

e
q

u
ir

ed
.

30/8/2023
Α. Τσιρου (ΕΚΠΑ), Piero Giorgio Verdini

(INFN Pisa)
11

30/8/2023
Α. Τσιρου (ΕΚΠΑ), Piero Giorgio Verdini

(INFN Pisa)
12

Rotation

shielding
Collar

shielding

HF body
HF-plug

CASTOR

CASTOR

table

Collar

platform

HF

platform

Raisers

tower

R1

R2

Z1

Z2

R3
R4

X1

R5

R4

R6

R6
Z3

Z3

Z4
Z5

HF
T2

30/8/2023
Α. Τσιρου (ΕΚΠΑ), Piero Giorgio Verdini

(INFN Pisa)
13

Dewpoint problem for all systems that are cooled
below ~13 deg C…

30/8/2023
Α. Τσιρου (ΕΚΠΑ), Piero Giorgio Verdini

(INFN Pisa)
14

Η πλατφορμα-ecosystem(software+hardware+sensors, κοινοτητα) Arduino
https://www.arduino.cc/εχει δωσει τεραστια ωθηση στην μετρηση, σε ολα τα εργαστηρια,
τις σχολικες ταξεις και τα ανωτερα ιδρυματα. Το Arduino hardware ειναι προσιτο και
απευθυνεται και σε μη ειδικους. Το περιβαλλον προγραμματισμου ειναι πολυ πιο φιλικο
και τα εργαλεια που παρεχονται διευκολυνουν την χρηση της πλατφορμας απο ολους.
Στην αρχη τα Arduino προγραμματιζονταν σε C++ μεσα στο περιβαλλον Arduino.ide. Αυτο
Το περιβαλλον βοηθαει φοβερα στον προγραμματισμο αλλα το προβλημα της γλωσσας
παραμενει διοτι η C++ δουλευεται απο ειδικους μονον. Οταν ομως τα Arduino αρχισαν να
χρησιμοποιουνται στα σχολεια υπηρξαν διαφορες προσπαθειες για απλες γλωσσες
προγραμματισμου (graphical –Scratch και Blockly). Οι γλωσσες αυτες δεν μπορουν να
χρησιμοποιηθουν σε ολο το φασμα δυνατοτητων του Arduino και απαιτουν πολλες φορες
ειδικες εκδοσεις του hardware. Επισης, η εκμαθηση τους για μαθητες που προσβλεπουν σε
Τεχνικο/επιστημονικο μελλον προσφερουν μια κακη προπαιδευση.
Στο μεταξυ, η γλωσσα προγραμματισμου Python (https://micropython.org/) εκανε την
επανασταση (μια ακομα!) στον χωρο προγραμματισμου, με διαρκως περισσοτερους
οπαδους-εφαρμογες. Στην Python (διερμηνευμενη γλωσσα) ο κυκλος προγραμματισμου
ειναι πολυ πιο συντομος και αμεσος.
Η Python μεταφυτευτηκε στο Arduino hardware σαν μPython και ειναι μια γλωσσα που
παρεχει την δυνατοτητα πληρους αξιοποιησης της πλατφορμας και παρα πολλα
ηλεκτρονικα κομματια παρεχουν το software ετοιμο. Επιπλεον ειναι η ιδανικη γλωσσα να
επιδειξουμε σε μαθητες που εχουν τεχνολογικες/επιστημονικες ανησυχιες.

30/8/2023
Α. Τσιρου (ΕΚΠΑ), Piero Giorgio Verdini

(INFN Pisa)
15

https://www.arduino.cc/

Το Arduino και το προγραμμα LED
blink

Η πραγματικη επανασταση του συστηματος Arduino ειναι ολα τα επιπεδα αφαιρεσης αναμεσα στην
δουλεια της CPU και στα ηλεκτρονικα κομματια , (I/O pins).

Where before you would need to manipulate the registers with cryptic instructions such as
DDRD = 0b11111111; // declaring port D as output, because we know the LED is connected to port D, pin 0

PORTD |= 0b10000000; // pin 0 of port D set HIGH, all other pins left unchanged, this is an OR operation

_delay_ms(1000); // delay of one second

PORTD &= 0b01111111; // pin 0 of port D set LOW, all others left unchanged, this is an AND operation

now you can achieve the same result with more meaningful and understandable instructions:

pinMode(LED_BUILTIN, OUTPUT); // we do not need to remember which port and pin the LED is connected to

digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level), no need to manipulate bits

delay(1000); // wait for a second

digitalWrite(LED_BUILTIN, LOW); // turn the LED off (LOW is the voltage level), again no bit manipulation needed

Αναλυση προγραμματος

void setup() {

pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {

digitalWrite(LED_BUILTIN, HIGH);

delay(1000);

digitalWrite(LED_BUILTIN, LOW);

delay(1000

}

The setup() function is executed only once, at the
beginning of the program. In this case, it handles the
mechanisms needed to make the pin the on-board LED
is connected to an output (so we can turn the LED on
and off)

The loop() function, instead, is supposed to keep
running "forever". In this case, it makes the LED pin
take a HIGH value (+5 V) so the LED turns on, waits for
1 second, makes the LED pin take a LOW (0 V) value so
the LED turns off, then waits 1 more second before
ending and restarting again, and again, and again...

Το ιδιο "blinky" παραδειγμα σε
MicroPython

• We can now try the LED blink example in MicroPython:
in Thonny, create a new file (click on the blank page
icon) and type in the following, being very careful to
respect the indentation (use the Tab key "-->"):

import time

from machine import Pin

ledpin = machine.Pin(2, Pin.OUT)

while(True):

ledpin.on()

time.sleep(0.5)

ledpin.off()

time.sleep(0.5)

Τι συμβαινει στο"blinky" προγραμμα;

import time

from machine import Pin

ledpin = machine.Pin(2,
Pin.OUT)

while(True):

ledpin.on()

time.sleep(0.5)

ledpin.off()

time.sleep(0.5)

These two lines are similar
to #include <library.h> in
C/C++

here we define the LED pin

now we loop forever

turn the pin to 1 (LED off)

wait half a second

turn the pin to 0 (LED on)

wait half a second

Οι αισθητηρες που θα χρησιμοποιησουμε μετρανε ο,τι χρειαζομαστε και με
τους ανιχνευτες
• Θερμοκρασια
• Αποσταση
• Υγρασια
• ροη
• πιεση
• Και ο,τι αλλο….

Η διαφορα ειναι οτι εσεις μπορειτε να χρησιμοποιητε ψηφιακους αισθητηρες...
εμεις ΟΧΙ.
Παρακατω βλεπετε αισθητηρες που χρησιμοποιουνται καθημερινα απο ολους μας....

30/8/2023
Α. Τσιρου (ΕΚΠΑ), Piero Giorgio Verdini

(INFN Pisa)
20

Ο αισθητηρας BMP180 (θερμοκρασια,
πιεση)

3V3
G
D1
D2

BMP180 (Bosch):

• VIN: power voltage, 3.3 V - pin "3V3" on CPU
board;

• GND: power return, GND - pin "G" on CPU board;
• SCL: input I2C clock line (ρυθμος επικοινωνιας!)-

pin "D1" on CPU board, GPIO 5;
• SDA: input/output I2C data line - pin "D2" on CPU

board, GPIO 4;
• measures Temperature between 0 and 65 C,

pressures between 300 and 1100 hPa
(corresponding to +9000 and -500 m relative to
sea level)

Arduino βιβλιοθηκες για αισθητηρες!
Πολλες!

Another great strength of the Arduino "system" is the
availability of "libraries" to handle many, many types of
hardware. From the Arduino IDE, under "Tools", select
"Library Manager" and enter, for example, BMP180. Scroll
down until you find "BMP180MI" and click on "Install".
After a short while, you will have this library available to
call in your programs. Most libraries also come with
example programs you can open, read, modify and play
with. The BMP180 is not an exception. Similarly, you can
search for AHT20 and install a library for the AHT20 (and
AHT21) sensor, and an example program, or search for
LM75A to get a library for the LM75A sensor, with
examples.

Arduino Nano pinout: which pins can
do what

Beyond the Arduino IDE:
MicroPython

https://micropython.org/

Andromachi Tsirou, Piero Giorgio Verdini 25

Why MicroPython?

• MCU speeds and memory are increasing every year

• easier to write and read than C/C++

• easier to test than C/C++

• available on a large number of microcontroller families

• large selection of modules (libraries) available

• easier access to IoT protocols

• exception handling is superior

• complex data types (lists, dictionaries...) are
immediately available

Why NOT MicroPython?

• less efficient (interpreted vs compiled) both in
terms of CPU cycles and of memory. This is less
often a problem than one would think, as many
programs spend large amounts of time "waiting"
for an event in an idle loop.

• errors can remain undiscovered until the buggy
section of code is executed, while in the case of
compiled code syntax errors are found at
compilation. Logical errors, on the other hand...

• cannot run on the "smallest" (and usually least
expensive) systems with limited resources.

Interpreted vs Compiled

• Already in 1952, interpreters were used to
ease programming

• in 1958, John McCarthy began developing a
LISP interpreter

• by the early 1970s, BASIC was used on
mainframe computers

• in the mid 1970s, the advent of
microcomputers caused an explosive
growth of BASIC, followed by Eiffel,
JavaScript, Lua, MATLAB, Perl, PHP, R, Ruby,
VBScript...

Why interpreted?

• The software development cycle is faster, since
any modifications to the code do not require a
compilation of the source code.

• An interpreted program can be distributed as
source code without the need for recompilation,
and apart from architecture-dependent features,
does not need any adaptation to the new system.

• Once you are satisfied with your MicroPython
script, you can just save it in the microcontroller's
filesystem as "main.py" and it will be run avery
time the microcontroller starts up.

Hardware and Software

• Hardware:
– D1 Mini (ESP8266) CPU board

(https://www.wemos.cc/en/latest/d1/d1_mini.html);
– BMP180 (Temperature and Pressure) sensor board;

• Software:
– Thonny IDE (https://thonny.org/);
– MicroPython firmware

(https://micropython.org/download/esp8266/);
– BMP180 MicroPython module

(https://github.com/micropython-IMU/micropython-
bmp180)

– Optional: esptool
(https://github.com/espressif/esptool/releases);

The CPU board: ESP8266 with 4
MBytes Flash

The CPU board pins and their
functions

Note that pins have more than one
denomination, depending whether
you are using the Arduino IDE or
MicroPython to program the CPU. In
MicroPython, the GPIOxx number is
used, so GPIO4 will be "Pin 4".
The board has an LED, connected to
GPIO pin 2 (also D4) so that the LED
will be ON if the pin outputs 0, and
off if the pin outputs 1.

Which are the best pins to use?

Label GPIO Serial SPI I2C Other Comment Input Out

D0 16 Wakeup HIGH at boot No interrupt OK

D1 5 SCL OK OK

D2 4 SDA OK OK

D3 0 FLASH boot fails if LOW Pulled up OK

D4 2 TXD1 Board LED boot fails if LOW Pulled up OK

D5 14 CLK OK OK

D6 12 MISO OK OK

D7 13 RXD2 MOSI OK OK

D8 15 TXD2 CS boot fails if HIGH Pulled down Maybe

TX 1 TXD0 HIGH at boot Maybe NO

RX 3 RXD0 boot fails if LOW NO Maybe

A0 0 ADC Analog NO

Installing firmware with Thonny 4.1.2

The newest (as of today) version of Thonny can
even fetch your firmware for you, and allows
you to specify more parameters for the upload
of firmware to your microcontroller...

The "blinky" example

• We can now try the LED blink example in MicroPython:
in Thonny, create a new file (click on the blank page
icon) and type in the following, being very careful to
respect the indentation (use the Tab key "-->"):

import time

from machine import Pin

ledpin = machine.Pin(2, Pin.OUT)

while(True):

ledpin.on()

time.sleep(0.5)

ledpin.off()

time.sleep(0.5)

What is going on in our "blinky"
program?

import time

from machine import Pin

ledpin = machine.Pin(2,
Pin.OUT)

while(True):

ledpin.on()

time.sleep(0.5)

ledpin.off()

time.sleep(0.5)

These two lines are similar
to #include <library.h> in
C/C++

here we define the LED
pin

now we loop forever

turn the pin to 1 (LED off)

wait half a second

turn the pin to 0 (LED on)

wait half a second

Another program: I2C scanner

from machine import Pin

i2c = machine.I2C(scl=Pin(5), sda=Pin(4))

print('Scanning i2c bus...')

devices = i2c.scan()

if len(devices) == 0:

print("No i2c devices found!")

else:

print('found:', len(devices), 'i2c devices')

for device in devices:

print("Decimal address: ", device, " | Hexadecimal
address: ", hex(device))

Similar to #include<machine/Pin.h>

Declare an I2C interface on GPIO pins 5 and 4

Create a list of all devices present on the I2C bus

If the list has zero length, so no elements, it means no
devices were found, so print a disappointed message

If the list is not empty, print the number of devices
found, then for each element of the list print the I2C
address that generated a positive response

The I2C bus

The I2C was designed by Philips in the 1980s for
communications between integrated circuits on the same
circuit board. However, it is not limited to this, and many
digital sensors make use of it for their readout, since it
requires few lines and can connect multiple sensors.
We will use I2C-based sensors in this lecture.
The main characteristics are:

– only two bus lines needed, SDA (Serial DAta) and SCL (Serial
CLock)

– synchronous bus, so no strict baud rate requirements exist
– multi-master system, with provisions for arbitration and collision

detection
– each device on the bus is addressable by its own unique address

The BMP180 Sensor board

3V3
G
D1
D2

BMP180:

• VIN: power voltage, 3.3 V - pin "3V3" on CPU
board;

• GND: power return, GND - pin "G" on CPU board;
• SCL: input I2C clock line - pin "D1" on CPU board,

GPIO 5;
• SDA: input/output I2C data line - pin "D2" on CPU

board, GPIO 4;
• measures Temperature between 0 and 65 C,

pressures between 300 and 1100 hPa
(corresponding to +9000 and -500 m relative to
sea level)

The AHT21 Sensor board

AHT21:

• VIN: power voltage, 3.3 V - pin "3V3" on CPU
board;

• GND: power return, GND - pin "G" on CPU board;

• SCL: input I2C clock line - pin "D1" on CPU board,
GPIO 5;

• SDA: input/output I2C data line - pin "D2" on CPU
board, GPIO 4;

• measures Temperature between -40 and 120 C,
relative humidity between 0 and 100 %

What if there IS no existing software
module?

• Suppose you find a new sensor for which nobody has
published a module yet. How difficult is it to develop your
own software?

• The LT75 is a temperature sensor with a digital output that
becomes active when the temperature exceeds a
programmable threshold. It is an I2C slave and contains
four registers:
– Temperature, 9 bits encoded over 2 bytes, read-only (address 0)
– Configuration, 8 bits (address 1)
– Hysteresis, 9 bits encoded over 2 bytes (address 2)
– Threshold, 9 bits encoded over 2 bytes (address 3)

• We can start by simply reading the temperature register.

The LM75A sensor board and its
connections

On the back, the module allows you to change three bits of the I2C address. Leave them unconnected for now.

The quick and dirty code (but we have
a module for the LM75a... feel free to

try it)
WARNING! Ugly code! But it does work...

from machine import I2C, Pin

Create an instance of the I2C bus with the right pin numbers

i2c = I2C(scl=Pin(5), sda=Pin(4))

Create a 2-byte buffer for storing the temperature measurement

tbuffer = bytearray(2)

Read two bytes from the temperature register into the newly created buffer. The LM75 address is 0x48

i2c.readfrom_mem_into(0x48, 0, tbuffer)

Convert 9 bits to a temperature value. The integer part is in tbuffer[0] and the 0.5 in the MSB of tbuffer[1]

temperature = (tbuffer[0]) + (tbuffer[1] >> 7) / 2

print(temperature)

Python and executing actions at a
given time

MicroPython has extensions which allow the easy
use of most features of the microcontrollers it runs
on, and this includes the timers. It is possible to
create a Timer (which can in some cases be virtual -
with no corresponding hardware timer in the CPU)
with a given period (or just a single execution after
a specific delay), and associate with it a so-called
"callback function" to be executed when the Timer
runs out (the period has expired). In the next
example, we will use two, to schedule the readout
of temperature and relative humidity from the
AHT21 sensors every 5 and 30 seconds respectively.

import time

import micropython

from machine import Pin, I2C, Timer

import ahtx0

i2c = I2C(scl=Pin(5), sda=Pin(4))

aht = ahtx0.AHT10(i2c)

t1 = Timer(1)

t1.init(mode = Timer.PERIODIC, period = 5000,
callback = lambda t :
micropython.schedule(print, f'T =
{aht.temperature:.1f} C'))

Explaining the Timer listing (1)

import time

import micropython

from machine import Pin,
I2C, Timer

import ahtx0

i2c = I2C(scl=Pin(5),
sda=Pin(4))

aht = ahtx0.AHT21(i2c)

These lines contain the
code we already used to
prepare the readout of
the AHT21 sensor:

• include the necessary
modules (libraries)

• setup the I2C bus

• create an AHT21 object

Explaining the Timer listing (2)

t1 = Timer(1)
t1.init(

mode = Timer.PERIODIC,
period = 5000,
callback = lambda t :

micropython.schedule(print,
f'T = {aht.temperature:.1f} C')
)

Create a Timer object with id =
1
Set it up so that it runs in
periodic mode (restarts
immediately after expiring),
with a period of 5000
milliseconds, and with an
anonymous callback function
that requests that the Python
system print "as soon as
possible" the (formatted)
temperature value.
The same happens for
humidity.

Explaining the Timer listing (3)

A few pythonic notes:
1. we should NOT specify directly print() as the callback function

since it would be executed in Interrupt mode. Better to ask
Python to print "as soon as possible" but outside of Interrupt
mode, using the micropython.schedule() call.

2. Since the callback functions are not really useful for anything
else, we do not need to give them a name, but we can create
them as anonymous using the "lambda" notation. n Python, a
lambda function is a small, anonymous function that can take
any number of arguments, but can have only one expression.
Perfect here.

3. f'T = {aht.temperature:.1f} C' is a string containing a format
specification, namely the value of the temperature with exactly
one decimal digit.

More callback functions

It is also possible to associate a callback function with an
interrupt caused by an event on an input (or even an
output) pin. Then the CPU could execute any kind of main
loop without the need to check the pin while stil
responding (and quickly) to the arrival of a signal.
In the following example, a callback function (that prints
the number of the pin) is associated with an interrupt
generated by a falling edge (1 to 0) on pin 4 (D2). In the
main loop, pin 5 (D1), defined as an output, changes
value regularly, printing "Pin(5)" every time a falling edge
is generated. By connecting pin 5 to pin 4, the program
starts printing additionally "Pin(4)" just after "Pin(5)",
with no evident instruction to do so.

Pin callback example

from machine import Pin

import time

p0 = Pin(5, Pin.OUT)

p1 = Pin(4, Pin.IN)

p1.irq(handler = lambda p : print(p), trigger = Pin.IRQ_FALLING)

while True:

p0.value(0)

time.sleep(0.5)

p0.value(1)

time.sleep(4.5)

Using Thonny to install the ESP8266
firmware

1. Select the CPU and the port

2. Find the firmware on your computer

3. Select the firmware binary

4. Start the installation (it will take
some time)

5. Once done, close the pop-ups

6. Finally, test that you have a working
setup

A
0

-A
5

 R
e

ad
 a

n
al

o
g

va
lu

e
s

D
2

-D
3

 R
e

ad

d
ig

it
al

 in
p

u
ts

5
V

 p
o

w
er

. F
o

r
(a

lm
o

st
)

ev
e

ry

se
n

so
r

D
1

0
-D

1
1

-D
1

3

“D
ri

ve
”

d
ig

it
al

o

u
tp

u
ts

GROUND!
Your
reference!

USB connection with your PC

30/8/2023
Α. Τσιρου (ΕΚΠΑ), Piero Giorgio Verdini

(INFN Pisa)
60

Arduino UNO pinout

How do we connect our sensors?
BMP180

The BMP180 sensor board has four pins. We can connect them to our
Arduino Nano as follows:
• VIN is the power supply for the sensor, which MUST be 3.3V and

NOT 5V (otherwise you will destroy it). So, we need to connect it to
the "3v3" pin of the Nano.

• GND is the power return, and it goes to one "GND" pin of the Nano
(there are two available).

• SCL is the Serial CLock signal needed to read the sensor, and it
needs to be connected to the "SCL" pin of the Nano, which is also
called and labeled "A5".

• SDA is the Serial DAta line used to read the sensor, and it needs to
be connected to the SDA line of the Nano, which is also called and
labeled "A4".

Connections, in detail

VIN GNDSCLSDA

Arduino UNO version of the
connections:

VI
N

GN
D

Note that the pins are located
in different positions.

You can totally ignore the
explanations for the pins
you are not interested in,
or check them out for the
future...

SC
L

SD
A

Connecting the AHT21 sensor board
(αισθητηρας

υγρασιας+θερμοκρασιας)

The AHT21 board also has four pins, in fact they are the
same as for the BMP180 board but are not placed in
the same positions, rather the other way around, so
please be careful. You can disconnect the Arduino UNO
from USB, disconnect the BMP180 board one wire at a
time and reconnect each wire to the AHT21
immediately.

Write down which color wires you are using for which
signal, and try to keep the association between signal
and wire color always the same, and you will prevent
trouble.

Connecting the LM75 board

The LM75 board seems to have one more connection,
the one labeled "OS", but we do not really need it. It
is an output that the LM75 makes active whenever
the temperature exceeds a set limit (so it can be used
as a thermostat).

In fact, ignoring "OS", the connections are similar to
those for the AHT21, except for the exchange of SCL
with SDA (this is an annoying fact, but there is no
"standard" way of connecting these boards, as every
producer feels free to locate the pins wherever it is
more convenient. For him, not for us).

Arduino and LED blink program

The real innovation that the Arduino "system" brought is the layer of abstraction between the inner
workings of the CPU and the access to the resources, such as I/O pins. Where before you would need to
manipulate the registers with cryptic instructions such as

DDRD = 0b11111111; // declaring port D as output, because we know the LED is connected to port D, pin 0

PORTD |= 0b10000000; // pin 0 of port D set HIGH, all other pins left unchanged, this is an OR operation

_delay_ms(1000); // delay of one second

PORTD &= 0b01111111; // pin 0 of port D set LOW, all others left unchanged, this is an AND operation

now you can achieve the same result with more meaningful and understandable instructions:

pinMode(LED_BUILTIN, OUTPUT); // we do not need to remember which port and pin the LED is connected to

digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level), no need to manipulate bits

delay(1000); // wait for a second

digitalWrite(LED_BUILTIN, LOW); // turn the LED off (LOW is the voltage level), again no bit manipulation needed

Let us analyze the LED blink program

void setup() {

pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {

digitalWrite(LED_BUILTIN, HIGH);

delay(1000);

digitalWrite(LED_BUILTIN, LOW);

delay(1000

}

The setup() function is executed only once, at the
beginning of the program. In this case, it handles the
mechanisms needed to make the pin the on-board LED
is connected to an output (so we can turn the LED on
and off)

The loop() function, instead, is supposed to keep
running "forever". In this case, it makes the LED pin
take a HIGH value (+5 V) so the LED turns on, waits for
1 second, makes the LED pin take a LOW (0 V) value so
the LED turns off, then waits 1 more second before
ending and restarting again, and again, and again...

Arduino (sensor) Libraries

Another great strength of the Arduino "system" is the
availability of "libraries" to handle many, many types of
hardware. From the Arduino IDE, under "Tools", select
"Library Manager" and enter, for example, BMP180. Scroll
down until you find "BMP180MI" and click on "Install".
After a short while, you will have this library available to
call in your programs. Most libraries also come with
example programs you can open, read, modify and play
with. The BMP180 is not an exception. Similarly, you can
search for AHT20 and install a library for the AHT20 (and
AHT21) sensor, and an example program, or search for
LM75A to get a library for the LM75A sensor, with
examples.

Arduino Nano pinout: which pins can
do what

Arduino UNO pinout

How do we connect our sensors?
BMP180

The BMP180 sensor board has four pins. We can connect them to our
Arduino Nano as follows:
• VIN is the power supply for the sensor, which MUST be 3.3V and

NOT 5V (otherwise you will destroy it). So, we need to connect it to
the "3v3" pin of the Nano.

• GND is the power return, and it goes to one "GND" pin of the Nano
(there are two available).

• SCL is the Serial CLock signal needed to read the sensor, and it
needs to be connected to the "SCL" pin of the Nano, which is also
called and labeled "A5".

• SDA is the Serial DAta line used to read the sensor, and it needs to
be connected to the SDA line of the Nano, which is also called and
labeled "A4".

Connections, in detail

VIN GNDSCLSDA

Arduino UNO version of the
connections:

VI
N

GN
D

Note that the pins are located
in different positions.

You can totally ignore the
explanations for the pins
you are not interested in,
or check them out for the
future...

SC
L

SD
A

Connecting the AHT21 sensor board

The AHT21 board also has four pins, in fact they are the
same as for the BMP180 board but are not placed in
the same positions, rather the other way around, so
please be careful. You can disconnect the Arduino UNO
from USB, disconnect the BMP180 board one wire at a
time and reconnect each wire to the AHT21
immediately.

Write down which color wires you are using for which
signal, and try to keep the association between signal
and wire color always the same, and you will prevent
trouble.

Connecting the LM75 board

The LM75 board seems to have one more connection,
the one labeled "OS", but we do not really need it. It
is an output that the LM75 makes active whenever
the temperature exceeds a set limit (so it can be used
as a thermostat).

In fact, ignoring "OS", the connections are similar to
those for the AHT21, except for the exchange of SCL
with SDA (this is an annoying fact, but there is no
"standard" way of connecting these boards, as every
producer feels free to locate the pins wherever it is
more convenient. For him, not for us).

