Status of the tracking code PLACET2 and First Decelerator Lattice for CLIC 380 GeV

Raul Costa

June 15, 2023

Geneva, Switzerland

Raul Costa

0/31

Outline

1 Status of PLACET2

- Introduction
- Coherent Synchrotron Radiation
- Power Extraction and Transfer Structures
- Current Status

2 CLIC 380 GeV Decelerator Lattices

- Introduction
- Lattice Design
- Results
- Losses due to δ_0
- Dependence on Emittance
- Conclusions and Outlook

Status of PLACET2

PLACET2 tracking is:

- Multi-particle
- Multi-bunch
- <u>Re-circulating</u>
- Linear and Non-Linear
- Wakefields (short and long-range, transverse and longitudinal)
- Synchrotron Radiation (coherent and incoherent)

gitlab.cern.ch/clic-software/placet/-/tree/PLACET2

Re-Circulation Applications

Re-Circulation Applications

• Not tracking all bunch pathways simultaneously caused PLACET1 optimizations to not close dispersion for all bunches in the combiner rings

• Studies of other multi-bunch effects such as long-range wakefields in ERLs are also easily targeted by PLACET2

Raul Costa

Beam Model

- PLACET1 uses 3 different bunch models:
 - a 4D single-bunch macro-particle ensemble
 - a 6D single-bunch macro-particle ensemble (for dispersion)
 - a sliced-beam model for accelerating structure and PETS (that can also be used to model a full train)
- PLACET3 can model each bunch individually as a 6D ensemble. It also allows for different-weighted particles (usefull for halo/tail studies)

Element Structure

Thick Kicks:

- Drifts
- Bends
- Quadrupoles
- Cavities
- etc

Thin Kicks:

- Correctors
- Multipoles
- Radiation
- Wakefields
- Readouts
- etc.

Element Slicing

• Drift-Kick-Drift is simpler and allows for the 1-kick approximation (multipoles, correctors)

• Kick-Drift-Kick converges faster and some kicks require entrance/exit processing anyway (radiation, wakefields)

Short-Range Transverse Wakefield:

Raul Costa

CLIC Decelerators

June 15, 2023

6/31

Coherent Synchrotron Radiation

S. Di Mitri - Lecture_We9

E. Saldin *et al*, ''On the coherent radiation of an electron bunch moving in an arc of a circle'', Proc. PAC97, 1997, Canada

Coherent Synchrotron Radiation

- PLACET1 gave the user "too much freedom" in smoothing the charge distribution function
- The Saldin integral is not defined z = z' so it was being truncated in the numerical integration

$$\frac{dE(z,\phi)}{d(ct)} = -\frac{2Nr_cmc^2}{3^{1/3}\rho^{2/3}} \left\{ \frac{\lambda(z-z_{\rm s}) - \lambda(z-4z_{\rm s})}{z_{\rm s}^{1/3}} + \int_{z-z_{\rm s}}^z \frac{\lambda'(z')}{(z-z')^{1/3}} dz' \right\}$$
$$I_{\rm CSR}(z,\phi) = \frac{3}{2} \left\{ z_{\rm s}^{2/3}\lambda'(z-z_{\rm s}) + \int_{z-z_{\rm s}}^z (z-z_{\rm s})^{2/3}\lambda''(z') dz' \right\}$$

Power Extraction and Transfer Structures

Power Extraction and Transfer Structures

PETS extract power form the bunch through a longitudinal wakefield

- At each node, a charge distribution is convoluted with the wakefunction, creating a discrete mesh
- Each macroparticle is interpolated with the mesh (giving us a continuous function)
- In between nodes, particles are allowed to slip longitudinally if they have high $\overline{x'}$ or $\overline{y'}$

Entrance and Exit long-range kicks manage the trailing fields:

- Exit kick stores the wakefield and timing info
- Entrance kick checks timing of stored fields and deletes those no longer needed

•
$$t_{\text{wake}} = \frac{L_{\text{PETS}}}{c} \frac{1 - \beta_g}{\beta_g}$$

- The kick is only applied once the bunch enters the field
- Optionally, total beam energy is compared between entrance and exit to compute $P_{\text{Extracted}}$

PETS - Consequences of longitudinal slippage

Longitudinal slippage of high-amplitude particles causes am increase in σ_z and Δt (we'll come back to it)

Note: There has been a study of slippage for the 30 GHz CLIC but it was based on the full bunch being offset

D. Schulte, Proc. EPAC'02, Paris, France, 2002, MOPRI044

Raul Costa

CLIC Decelerators

- PLACET2 remains the only tool available for tracking re-circulating lattices
- CSR and the PETS were the 2 big remaining features of PLACET1 left to add
- A few features were added along the way (macro-particle weight, better dispersion-free twiss, etc.)

- PLACET2 remains the only tool available for tracking re-circulating lattices
- CSR and the PETS were the 2 big remaining features of PLACET1 left to add
- A few features were added along the way (macro-particle weight, better dispersion-free twiss, etc.)

We're now ready for PLACET3!

- Multiple species
- Non-relativistic particles
- Muon decay
- Space-charge
- etc.

We'll hear from Paula soon!

12/31

CLIC 380 GeV Decelerator Lattices

• D. Schulte, "Stability of the Drive Beam in the Decelerator of CLIC", *Proc. EPAC'02*, Paris, France, 2002, MOPRI044, pp. 497-499.

• E. Adli and D. Schulte, "Beam-Based Alignment for the CLIC Decelerator", *Proc. EPAC'08*, Genoa, Italy, 2008, MOPP001, pp. 547-549.

• D. Schulte and R. Tomás, "Dynamic Effects in the New CLIC Main Linac", *Proc. PAC'09*, Vancouver, Canada, 2009, TH6PFP046, pp. 3811-3813.

• D. Schulte, G. Sterbini and E. Adli, "A Comparative Study for the CLIC Drive Beam Decelerator Optics", *Proc. IPAC'12*, New Orleans, USA, 2012, TUPPR035, pp. 1897-1899.

• G. Sterbini and D. Schulte, "Beam-based Alignment of CLIC Drive Beam Decelerator using Girders Movers", *Proc. IPAC'11*, San Sebastian, Spain, 2011, TUPC019, pp. 1036-1038.

• etc.

14/31

The CLIC Module

ACCELERATOR

Raul Costa

The CLIC Module

ACCELERATOR

On the decelerator side we have a simple FODO with:

- Round $1.91 \,\text{GeV}$ beam (previous: $2.4 \,\text{GeV}$)
- $L_{\text{cell}} = 2.343 \,\text{m} \text{ (previous: } 2.01 \,\text{m} \text{)}$
- $\beta_{\rm max} = 4 \, {\rm m}$
- 2 to 4 PETS per FODO cell
- $L_{\text{PETS}} = 206 \,\text{mm} \,(\text{previous: } 213 \,\text{mm})$
- Reference energy according E_{\min} (next slide)
- Empty PETS slots as required by the Main-Beam (in a bit)

FODO reference energy

The reference energy is computed for the lowest energy particle of pulse steady-state, which is located roughly $1\sigma_z$ behind the bunch's center of mass

Note: The right-hand plot was made for a "compact" lattice (no empty PETS slots), each sector will scale slightly differently

Twiss Functions

We are matched for the steady-state so the initial 9 bunches slowly missmatch

"The total number of PETS per decelerator is 1,273." - PIP

"The total number of PETS per decelerator is 1,273." - PIP

Table 2.7: 7	The main	parameters	of the	different	ML s	sectors.
--------------	----------	------------	--------	-----------	------	----------

sector number	1	2	3	4	5
quadrupole number quadrupole length [m] quadrupole spacing [m]	$120 \\ 0.43 \\ 2.343$	$150 \\ 0.43 \\ 4.686$	86 0.43 7.029	62 1.01 7.029	$156 \\ 1.01 \\ 9.372$

- From quadrupole spacing, we can imply 10,320 structures per linac, and therefore 1,290 PETS per decelerator
- This is also what we find in
- https://gitlab.cern.ch/
- clic-simulations/

```
clic-380-gev/-/tree/master/
```

 $ML_DriveBeam$

"The total number of PETS per decelerator is 1,273." - PIP

Table 2.7:	The main	parameters	of the	different	ML	sectors.
------------	----------	------------	--------	-----------	----	----------

sector number	1	2	3	4	5
quadrupole number quadrupole length [m] quadrupole spacing [m]	$120 \\ 0.43 \\ 2.343$	$150 \\ 0.43 \\ 4.686$	$86 \\ 0.43 \\ 7.029$	62 1.01 7.029	$156 \\ 1.01 \\ 9.372$

- From quadrupole spacing, we can imply 10,320 structures per linac, and therefore 1,290 PETS per decelerator
- This is also what we find in
- https://gitlab.cern.ch/
- clic-simulations/

```
clic-380-gev/-/tree/master/
```

```
ML_DriveBeam
```

Table 2.15: The decelerator sectors.

sector number	1	2	3	4
number of modules number of PETS	$381 \\ 1273$	$355 \\ 1273$	$370 \\ 1273$	$364 \\ 1273$

"The total number of PETS per decelerator is 1,273." - PIP

Table 2.7:	The main	parameters	of the	different	ML sectors.
------------	----------	------------	--------	-----------	-------------

sector number	1	2	3	4	5
quadrupole number quadrupole length [m] quadrupole spacing [m]	$120 \\ 0.43 \\ 2.343$	$150 \\ 0.43 \\ 4.686$	$86 \\ 0.43 \\ 7.029$	62 1.01 7.029	$156 \\ 1.01 \\ 9.372$

- From quadrupole spacing, we can imply 10,320 structures per linac, and therefore 1,290 PETS per decelerator
- This is also what we find in
- https://gitlab.cern.ch/
- clic-simulations/

clic-380-gev/-/tree/master/ ML DriveBeam

Table 2.15: The decelerator sectors.

sector number	1	2	3	4
number of modules number of PETS	$381 \\ 1273$	$355 \\ 1273$	$370 \\ 1273$	$364 \\ 1273$

Table 5.10: RF parameters for the Main Linac RF structures working at 11.994 GHz. The Main-Beam accelerating structure has been optimized for the 380 GeV initial stage both Drive Beam [28] and klystron based [29] as well as for the 3 TeVstage [30].

	Main Beam Accelerator			PE	ГS	Crab
	380 GeV 3		3 TeV	380 GeV	3 TeV	
	DB	Klystron				
Number of structures	$20,\!592$	23,296	143,232	10,296	71,616	2
Active structure length [mm]	272	230	230			
Number of cells	33	28	28	33	34	12
Pulse length [us]	0.244			0.2	~ 200	
Aperture diameter [mm]	8.2 - 5.2	7.25 - 4.5	6.3 - 4.7	23	23	10
Filling time [ns]	55.75	63.75	66.27	1.52	1.55	
Input peak power [MW]	59.2	40.6	61.1	123.3	127.3	20
Average Q factor	5504	5846	5843	7200	7200	
Accelerating voltage unloaded [MV]	92.2	94.9	27.8	-	-	2.55
Accelerating voltage loaded [MV]	72	75	100	-	-	

10,296/8 = 1,287

"The total number of PETS per decelerator is 1,273." - PIP

Fable 2.7: Tl	ie main	parameters	of the	different	ML sectors.
----------------------	---------	------------	--------	-----------	-------------

sector number	1	2	3	4	5
quadrupole number quadrupole length [m] quadrupole spacing [m]	$120 \\ 0.43 \\ 2.343$	$150 \\ 0.43 \\ 4.686$	86 0.43 7.029	62 1.01 7.029	$156 \\ 1.01 \\ 9.372$

- From quadrupole spacing, we can imply 10,320 structures per linac, and therefore 1,290 PETS per decelerator
- This is also what we find in
- https://gitlab.cern.ch/

clic-simulations/

clic-380-gev/-/tree/master/

ML_DriveBeam

 Table 2.15:
 The decelerator sectors.

sector number	1	2	3	4
number of modules	381	355	370	364
number of PETS	1273	1273	1273	1273

Table 5.10: RF parameters for the Main Linac RF structures working at 11.994 GHz. The Main-Beam accelerating structure has been optimized for the 380 GeV initial stage both Drive Beam [28] and klystron based [29] as well as for the 3 TeVstage [30].

	Main Beam Accelerator			PETS		Crab
	380 GeV		3 TeV	380 GeV	3 TeV	
	DB	Klystron				
Number of structures	$20,\!592$	23,296	143,232	10,296	71,616	2
Active structure length [mm]	272	230	230			
Number of cells	33	28	28	33	34	12
Pulse length [us]		0.244		0.244		~ 200
Aperture diameter [mm]	8.2 - 5.2	7.25 - 4.5	6.3 - 4.7	23	23	10
Filling time [ns]	55.75	63.75	66.27	1.52	1.55	
Input peak power [MW]	59.2	40.6	61.1	123.3	127.3	20
Average Q factor	5504	5846	5843	7200	7200	
Accelerating voltage unloaded [MV]	92.2	94.9	27.8	-	-	2.55
Accelerating voltage loaded [MV]	72	75	100	-	-	

```
10,296/8 = 1,287
```

• The gitlab repository has a gradient of 69 MV/m and table 5.10 does not give us ratios so we opted by the 1,273 option

Raul Costa

Each module $\{...\}$ has 2 quadrupoles and 4 PETS slots which can be filled (**P**) or empty (**E**).

To match the Main-Linac we have to construct 5 super-cells with different fill factors:

- $S_1 \rightarrow \{\text{EPPP}\} \rightarrow 75\%$
- $S_2 \rightarrow \{\text{EPPP}\} \{\text{PPPP}\} \rightarrow 88\%$
- $S_3 \rightarrow \{\text{EPPP}\}\{\text{PPPP}\} \rightarrow 92\%$
- $S_4 \rightarrow \{\text{EEPP}\}\{\text{PPPP}\} \rightarrow 83\%$
- $S_5 \rightarrow \{\text{EEPP}\}\{\text{PPPP}\}\{\text{PPPP}\} \rightarrow 88\%$

Decelerator Lattice Design

Matching the number of PETS and modules to Table 2.15:

- Decelerator 1 (381 Modules, 1273 PETS, 893 m)
 - $121 \times S_1$
 - $130 \times S_2$
- Decelerator 2 (355 Modules, 1273 PETS, 832 m)
 - $17 \times S_2$
 - $84 \times S_3$
 - $23 \times S_4$
- Decelerator 3 (370 Modules, 1273 PETS, 867 m)
 - $42 \times S_4$
 - $61 \times S_5^*$
- Decelerator 4 (364 Modules, 1273 PETS, 853 m)
 - $91 \times S_5^*$
- * The last slot of the decelerator is empty

gitlab.cern.ch/clic-simulations/clic-380-gev/-/tree/master/DB_Decelerators

Raul Costa

Results - Energy Loss

As expected, all four lattices extract the same amount of energy

Results - Bunch Length and Extracted Power

- σ_z increases ~ 0.45% so one would expected a mild decrease in extracted power
- \bullet Instead we first observe a small increase in $P_{\rm Extracted},$ and a later decrease
- This can be explained by a mild change of shape of the distribution
- All four sectors are within the tolerance

Results - Longitudinal Slippage

• Slippage of the centroid poses a bigger threat since we expect a an RF timing error 47 fs to be significative

• However, this is a static^{*} effect, so the RF system should be tunable to counteract it

Raul Costa

• Seeing that the final energy spread is 50%, one could expect $\delta_0 = 0.85\%$ at injection would have no impact on beam dynamics but...

• Seeing that the final energy spread is 50%, one could expect $\delta_0 = 0.85\%$ at injection would have no impact on beam dynamics but...

• Seeing that the final energy spread is 50%, one could expect $\delta_0 = 0.85\%$ at injection would have no impact on beam dynamics but...

Losses due to δ_0

- Particles are lost at the field maximum
- With $\delta_0 = 0.85\%$, some particles are below the reference energy
- A small percentage of particles at the lower end of the distribution is not captured by the FODO's periodic solution

Solving the losses issue

• By making a small shift in the initial reference energy $E_{\text{ref}} \rightarrow (1 - \delta)E_{\text{ref}}$ we ensure all particles are captured by the FODO

Raul Costa

Emittance-Dependency

The longitudinal spillage is "static" but if it depends on the amplitude of oscillations. What is the effect of transverse emittance on it?

Emittance-Dependency

The longitudinal spillage is "static" but if it depends on the amplitude of oscillations. What is the effect of transverse emittance on it?

Consequence: changes in transverse emittance (even improvements) may require re-tuning of the RF coupling to the main linac

Raul Costa

June 15, 2023

Emittance-Dependency

Changes to σ_z and $P_{\text{Extracted}}$ are within the tolerance

- We produced the new CLIC 380GeV decelerator lattices
- Quadrupole matching needs to take into account the energy spread at injection
- Betatron-induced longitudinal slippage is a non-negligible effect
- The power output of the PETS is within tolerances
- The longitudinal slippage greatly affects the RF phase of the PETS
- Even though this is a static effect that should be correctable in the RF system, changes to transverse emittance could nulify said correction

- We can now use power extraction directly as a merit figure
- Matching the injection to the vertical dogleg, the feed-forward chicane and the turnaround loop (and eventually the entire complex)
- Applying injection errors and misalignments
- Applying periodic bunch errors matching the recombination complex different pathways