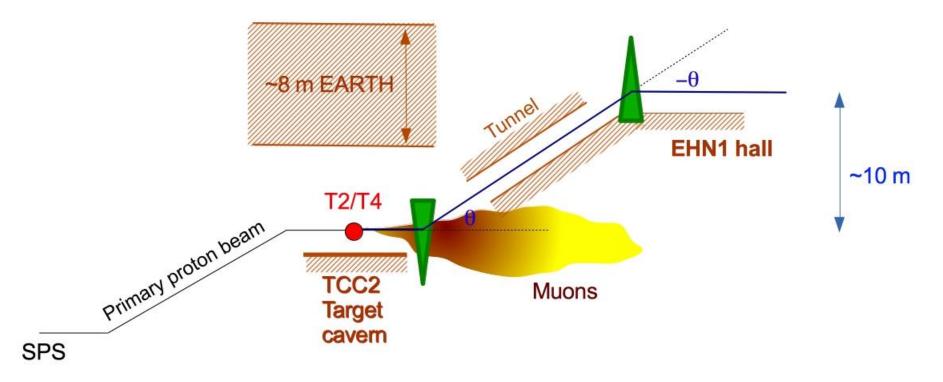

Secondary Beam Lines Exercise

First complete beam line in FLUKA

Beginner course – NEA, November 2023

Overview


- Purpose and users
- Secondary/tertiary beam lines
- Exercise introduction

North Area beamline design considerations

- Flexibility of particle type and beam settings
- Muon range (absorb underground)
- Charged pion lifetime
- Momentum selection (2·10⁻⁴)

Purpose and Users

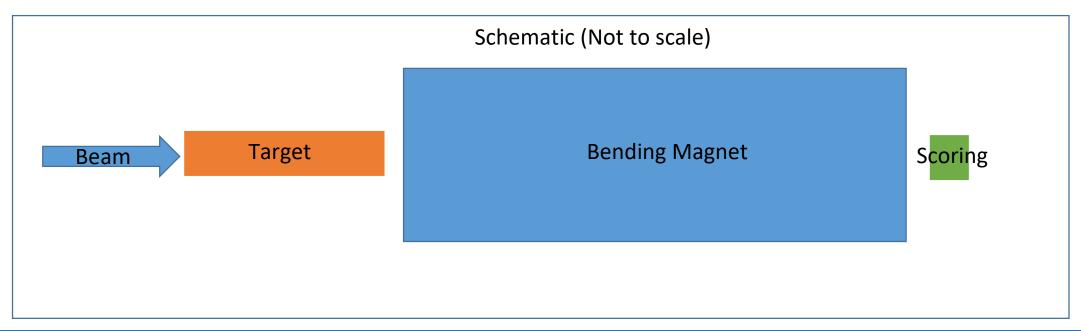
Secondary Beam Areas (SBA) are hosting:

• Fixed Target experiments: COMPASS,NA61, NA62, NA63, NA64, CLOUD, ...

- Precision studies (QCD, standard model, BSM physics)
- Stable beam conditions for weeks and weeks
- Irradiation facilities: HiRadMat, Charm, Irrad, GIF++
- Test beams:
 - Detector prototype tests
 - Detector calibration

e.g. for LHC, linear colliders, space & balloon experiments

- Outreach
- Usually require a large spectrum of beam conditions within few days



Secondary Beam Lines

Study of CERN secondary beam lines:

- Create your first complete beamline from scratch:
 - Define a primary proton beam
 - Define a target on which the proton beam will collide
 - Define a bending (sweeping) magnet after target
 - Score neutrons and protons after the magnet

Preparation of the input file

- Start from scratch \rightarrow no input given. You can use the predefined basic examples in FLAIR.
- Define a pencil proton beam (0 divergence and 0 spatial distribution in X,Y) with 400 GeV/c momentum. The beam starts on axis at z = -10 cm.

Define the beam chara	cteristics		
🔅 BEAM	Beam: Momentun	n▼ p: 400.0	Part: PROTON V
∆p: Flat ▼	Δр:	∆¢: Flat ▼	Δφ:
Shape(X): Rectangular	Δx:	Shape(Y): Rectangular 🔻	Δy:

- Create a cylindrical beryllium target of 2 mm diameter and 400 mm long starting at (0,0,0).
- Create a magnet region in vacuum which starts 1cm after the end of the target, with a box of size 1mx1mx5m in (X,Y,Z).
- Add a MGNFIELD card and associate it with the magnet region. Add a field in Y of 2 Tesla. Leave the other entries of the MGNFIELD blank.
- Define a scoring region in vacuum with a box of size 1cmx1cmx1cm, placed 1 cm after the magnet.

Preparation of the input file

Task : Score particles after bending magnet

Use USRTRACK to track particles in the scoring region

Scoring particles with usrtrack, neutrons in this case			
W USRTRACK		Unit: 21 BIN V	Name: scoren
Type: Log 🔻	Reg: SCORE V		Vol: 1
Part: NEUTRON V	Emin: 50.	Emax: 400.	Bins: 50

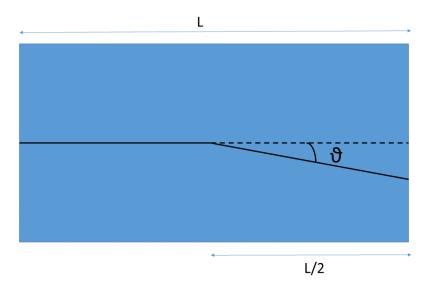
 Add two transport cards that you can find in FLAIR → This will make you simulations faster and discard some particles that are not relevant for our exercise.
 See next slide...

Preparation of the input file

- Task : Add two transport cards
- The two added cards should be set to:

	p1: MUON+ ▼ p4: PION- ▼	p2: MUON- ▼ p5: KAON+ ▼	p3: PION+ ▼ p6: KAON- ▼
	055 -		
EMF	: OFF 🔻		

• After setting the cards, run 2 cycles with 50000 primaries.


Plotting results with Flair

- Plot the magnetic field in the magnet region
- Plot particles fluence after the magnet (in the scoring region) for protons and neutrons. Do the spectra show what you expect?

Secondary Beam Lines – Optional Task

- Assuming that some primaries do not interact on target and exit it undisturbed (This
 is a good approximation in our case). Calculate the maximum size that your scorer
 can have in x in order to not detect 400 GeV/c protons.
- Hint: Use the formula $\vartheta[rad] = (0.29979 * B[T] * L[m])/p[GeV/c]$ to calculate the bending angle of the bending magnet.

Secondary Beam Lines – Optional Task

- It's quite common in secondary beams to have two or more experiments placed close by. In this case it's important that none of the experiments create backgrounds for the neighboring ones.
- Assuming that a high energy neutron detector of transverse dimensions of 50cmx50cm and 1cm thickness is placed on axis at $z = 7^*m$.
- Add a concrete block between your beam line and this detector, using an RPP, e.g.:

Shielding		
RPP shield	Xmin: -100	Xmax: 100
-	Ymin: -100	Ymax: 100
	Zmin: 643	Zmax: 693

Run 2 cycles with 5000 primaries and score using usrtrack:

Scoring neutron at the experim	ent	Unit: 22 BIN V	Name: scoren1
Type: Log ▼	Reg: SCORE1 V	Emax: 400.	Vol: 2500
Part: NEUTRON ▼	Emin: 50.		Bins: 50

Check the fluence for high energy (>50 GeV) and make sure it's less than 3*10⁻⁶ cm⁻² GeV⁻¹.

