

Simple sources and preprocessor

Beginner course – NEA, November 2023

Outline

1. Simple source definition

- Definition of simple beams
 - Beam parameters
 - Beam visualisation
 - Beam rotation
- Volumetric sources
- Multiple Beam Spots
- Further possibilities

2. The FLUKA preprocessor

1. Simple sources

BEAM & BEAMPOS cards | Visualisation | Volumetric sources | Multiple Beam Spots

Required cards

• In the *Basic input & Flair introduction* lecture we already saw two cards related to defining a beam in FLUKA, namely the **BEAM** and **BEAMPOS** cards:

BEAM	Beam: Momentum ▼	p:	Part: ▼
∆p: Flat ▼	∆p:	∆φ: Flat ▼	Δφ:
Shape(X): Rectangular ▼	∆x:	Shape(Y): Rectangular ▼	Δy:
BEAMPOS	X:	y:	z:
	COSX:	cosy:	Type: POSITIVE ▼

The BEAM card

* BEAM	Beam: Momentum 🔻	p:	Part: 🔻
∆p: Flat ▼	Δр:	∆φ: Flat ▼	Δφ:
Shape(X): Rectangular 🔻	Δx:	Shape(Y): Rectangular 🔻	Δу:

- The **BEAM** card allows to specify the following parameters:
 - Particle type
 - Momentum or kinetic energy
 - Momentum distribution
 - Angular distribution
 - Shape in the X-Y plane

The BEAM card: particle type

* BEAM	Beam: Momentum 🔻	p:	Part: 🔻
∆p: Flat ▼	Δр:	∆φ: Flat ▼	Δφ:
Shape(X): Rectangular 🔻	Δx:	Shape(Y): Rectangular 🔻	Δy:

Select particle type from the dropdown menu Default particle: **PROTON**

Non-standard particles:

- **HEAVYION**: Ion beams heavier than ⁴He Requires a **HI-PROPE** card.
- **ISOTOPE**: Radioactive isotope sources Requires the **HI-PROPE** and **RADDECAY** cards. See the *Radiation Protection calculations* lecture

The BEAM card: momentum/energy definition

* BEAM	Beam: Momentum 🔻	p:	Part: 🔻
∆p: Flat ▼	Δp:	∆φ: Flat ▼	Δφ:
Shape(X): Rectangular 🔻	Δx:	Shape(Y): Rectangular 🔻	Δу:

Select **Momentum** or **Energy** from the dropdown menu Enter the **value** in the input field next to it *Default value*: **200 [GeV/c]**

Note: In the case of advanced sources, setting the momentum slightly higher than the maximum momentum used in those sources is **crucial**, since this value is used to initialise the cross section data tables.

(See the *Advanced topics* lecture and FLUKA Advanced Course)

The BEAM card: momentum and angular distributions

* BEAM	Beam: Momentum 🔻	p:	Part: 🔻	
∆p: Flat ▼	Δр:	∆¢: Flat ▼	Δφ:	
Shape(X): Rectangular 🔻	Δx:	Shape(Y): Rectangular 🔻	Δy:	

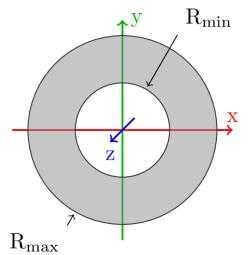
Momentum distribution types:

- Flat: Full width of a rectangular momentum distribution centred at beam momentum [GeV/c]
- Gaussian: FWHM of a Gaussian momentum distribution [GeV/c]

IMPORTANT: This is always momentum distribution, even if **Energy** was selected

Angular distribution types:

- Flat: Full width of a rectangular angular distribution centred at the beam axis [mrad]
- Isotropic: Isotropic distribution
- Gaussian: FWHM of a Gaussian angular distribution centred at the beam axis [mrad]



The BEAM card: beam shape in the X-Y plane

* BEAM	Beam: Momentum 🔻	p:	Part: 🔻	
Ap: Flat ▼	Δр:	Δφ: Flat ▼	Δφ:	
Shape(X): Rectangular 🔻	Δx:	Shape(Y): Rectangular 🔻	Δу:	

Distribution type:

- Rectangular: Full beam width in x/y direction centred at the beam axis [cm]
- Gaussian: FWHM of a Gaussian distribution in x/y direction centred at the beam axis [cm] Default: $\Delta x = 0.0$, $\Delta y = \Delta x$
- Annular distribution can be selected in the dropdown menu of Shape(X)
 - Rmin and Rmax are the radii of the distribution
 - The beam particle position is uniformly sampled on the **x**-**y** plane between **Rmin** and **Rmax**
 - For circular beam use Rmin = 0.0

The BEAMPOS card: beam position and direction

BEAMPOS

X:	y:	Z:
COSX:	cosy:	Type: POSITIVE ▼

Position:

The beam position is defined with its **x**, **y** and **z** coordinates [cm]

Default: Origin of the coordinate system

Direction:

The beam axis is defined via direction cosines with respect to the x and y axes

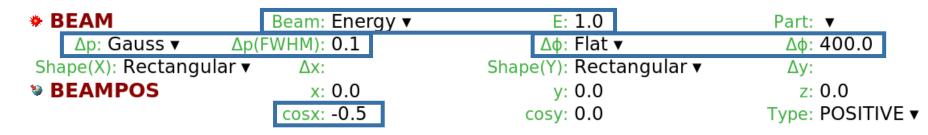
The third direction cosine (cosz) is automatically calculated by FLUKA

Note that this is not enough for an unequivocal direction definition; the sign of **cosz** has to be provided as well. Select **POSITIVE** or **NEGATIVE** from the *Type* dropdown

Default: Positive z direction

Default beam

- What happens if the **BEAM** and **BEAMPOS** cards are not filled in or are missing?
- FLUKA will use the built-in default (*note: may change in the future*):
 - Protons at 200 GeV/c momentum
 - Pencil beam: No divergence, zero radius
 - Starting from the origin of the coordinate system
 - Directed along the positive z axis
- This is almost never what you want!
- Always complete the relevant information in the **BEAM** and **BEAMPOS** card
- It is good practice to confirm what source you have defined by checking the FLUKA output (see the Standard output lecture)


Beam visualisation

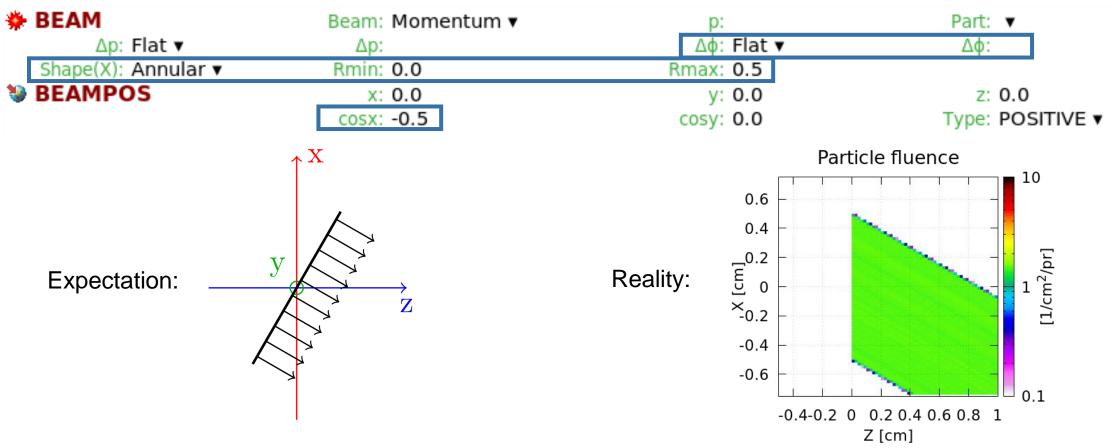
- The easiest way to check whether the beam parameters are set correctly is to visualise the beam
- There are two ways to do this:
 - Use the Geoviewer's BEAM object
 - Use standard FLUKA scorings (See the *Scoring* lectures) with **BEAMPART** as particle type
 - USRBIN for particle location and direction
 - USRBDX for energy spectrum (with a closed surface surrounding the source location)

Beam visualisation

 Example 1: 1 GeV Gaussian beam | 0.1 GeV/c FWHM momentum distribution | 0.4 rad flat angular distribution | rotated around the y axis by -30°

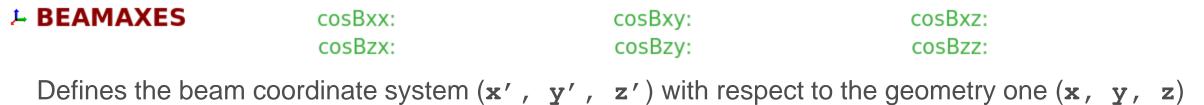


- Geoviewer **BEAM** object:
 - Starting point
 - Direction
 - Angular distribution
 - Beam mean energy
 - Default scale: 1 GeV(/c) = 1 cm
 Can be changed with the scale parameter

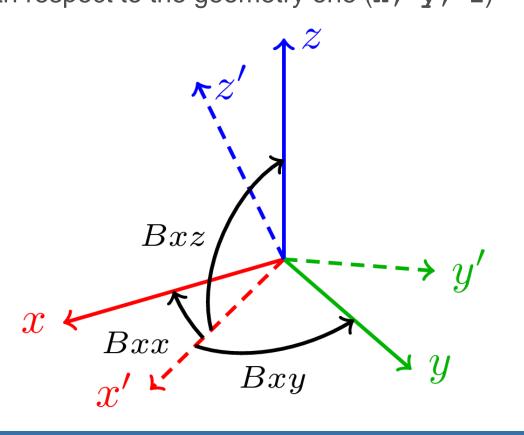

Beam visualisation

Beam rotation

• Example 2: R = 0.5 cm cylindrical beam | zero divergence | rotated around y axis by -30°

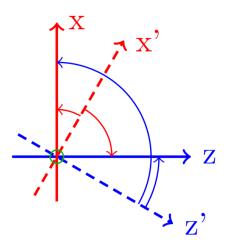


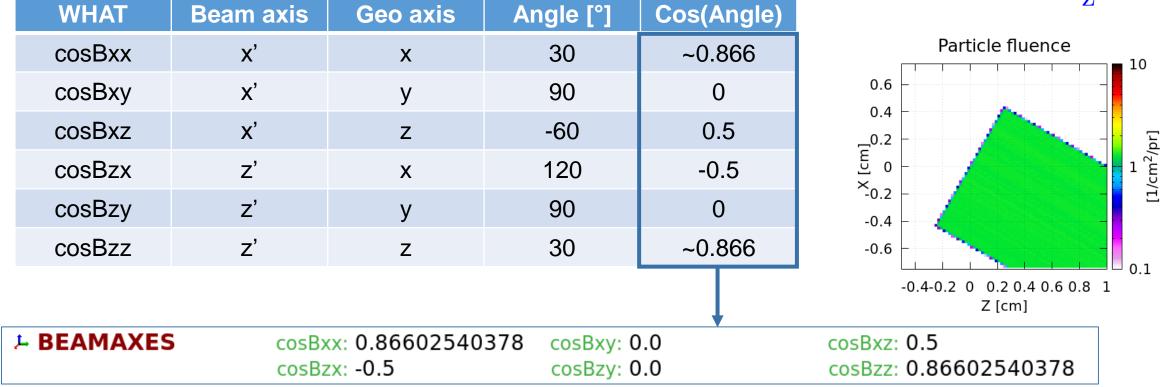
• Remember: the **BEAM** card sets the X-Y shape of the beam, which is not influenced by the beam direction set in the **BEAMPOS** card... so how can we rotate the beam?


Beam rotation

• Input card: **BEAMAXES**

Input fields:


- **cosBxx**: cosine of the angle between $\mathbf{x'}$ and \mathbf{x}
- **cosBxy**: cosine of the angle between $\mathbf{x'}$ and \mathbf{y}
- **cosBxz**: cosine of the angle between $\mathbf{x'}$ and \mathbf{z}
- **cosBzx**: cosine of the angle between z' and x
- **cosBzy**: cosine of the angle between z' and y
- **cosBzz**: cosine of the angle between z' and z



Beam rotation

 Example 2: R = 0.5 cm cylindrical beam | zero divergence | rotated around y axis by -30°

Volumetric sources

Volumetric sources can be defined with a second **BEAMPOS** card:

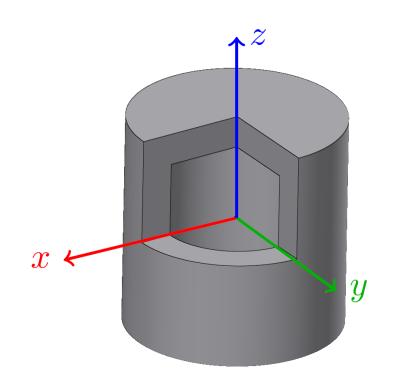
- Available types:
 - Spherical shell (SPHE-VOL)
 - Cylindrical shell (CYLI-VOL)
 - Cartesian shell (CART-VOL)
 - Spherical surface (FLOOD)
- Volumetric sources are centred around the position defined in the first BEAMPOS card
- The location inside the volume is sampled uniformly
- The particle direction and angular distribution set in the first **BEAMPOS** card and the **BEAM** card are still applied
- Warning: The spatial distributions specified in the **BEAM** card will be disregarded

Volumetric sources – Spherical shell

 $\boldsymbol{\mathcal{X}}$

 \boldsymbol{y}

Volumetric sources – Cylindrical shell


Rin: Hin: Rout: Hout: Type: CYLI-VOL **v**

Specifies a cylindrical shell shaped source around the **z** axis of the geometry

Input fields:

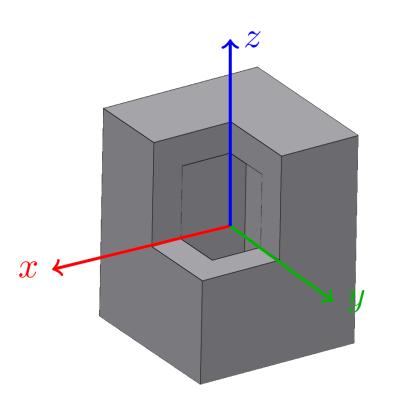
- Rin: Inner radius [cm]
- Rout: Outer radius [cm]
- Hin: Inner height [cm]
- Hout: Outer height [cm]

Note: The reference coordinate system can be changed with the **BEAMAXES** card

Volumetric sources – Cartesian shell

BEAMPOS

Xin: Yin: Zin:


Specifies a Cartesian shell shaped source along the axes of the geometry

Input fields:

- Xin & Xout: Inner & outer length of the x-sides
- Yin & Yout: Inner & outer length of the y-sides
- Zin & Zout: Inner & outer length of the z-sides

Note: The reference coordinate system can be changed with the **BEAMAXES** card

Xout:

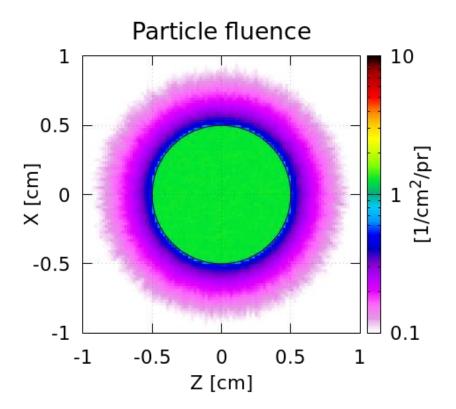
Yout:

Zout:

Volumetric sources – Spherical surface source

BEAMPOS

Type: FLOOD **v**


Specifies a spherical surface source in a way that the fluence inside the sphere is **uniform** and **isotropic**

The value of the generated fluence is: $\frac{1}{\pi R^2}$ cm⁻²

Input fields:

• R: Radius of the sphere [cm]

Warning: The particle direction and angular distribution set on the first **BEAMPOS** and the **BEAM** card are disregarded

Multiple beam spots – <u>SPECSOUR</u>

Input card: **SPECSOUR – BEAMSPOT**

Allows to define multiple beam spots

Can be used where the capabilities of the **BEAM**, **BEAMPOS**, and **BEAMAXES** are not sufficient, but more than one beam is required, like for radiotherapy.

	SPECSOUR Type: BEAMSPOT V	# spots:	Sampling: Random 🔻
--	---------------------------	----------	--------------------

- # spots: Number of defined beam spots, up to 15000
- Sampling: How primaries sampled between the individual beam spots
 - Random: The beam spots are sampled randomly, according to their weights
 - Sequentially weighted: The beam spots are sampled sequentially each with a number of primaries proportional to its weight
 - Sequentially equal: The beam spots are sampled sequentially, all with the same number of primaries, ignoring their weights

Beam spots are defined with **SPOTBEAM**, **SPOTPOS** and **SPOTDIR** cards

SPOTBEAM spot_id	Beam: Momentum 🔻	p:	Part: 🔻	
	Z: 0	A: 0	lsomer: 0	
∆p: Flat ▼	Δр:	Spot Weight:		
∆¢x: Flat ▼	Δφχ:	∆φy: Flat ▼	Δφy:	

Spot definition:

- spot_id: ID number of the beam spot. Numbering has to be continuous, starting from 1 Note the unusual location of the input field
- **Spot weight**: Relative intensity of the beam spot

Particle type:

- **Part**: Spot's particle type. If not selected, a heavy ion can be specified with:
- Z (atomic), A (mass number), Isomer: Specify a heavy ion

Default: Particle defined on the **BEAM** card (if no **Part** selected and no heavy ion specified)

SPOTBEAM spot_id	Beam: Momentum 🔻	, p:	Part: 🔻	
	Z: 0	A: 0	lsomer: 0	
∆p: Flat ▼	Δp:	Spot Weight:		
∆¢×: Flat ▼	Δφχ:	∆φy: Flat ▼	Δφy:	

Momentum / energy:

• Beam: Defines the Momentum [GeV/c] or Energy [GeV] or the emitting particle Default: Momentum / energy defined on the BEAM card

Momentum distribution:

- Δ**p**: Defines the beam's momentum distribution as:
 - Flat: Full width of a rectangular momentum distribution centred at beam momentum [GeV/c]
 - Gaussian: FWHM of a Gaussian momentum distribution [GeV/c]

Default: 0.0 (!)

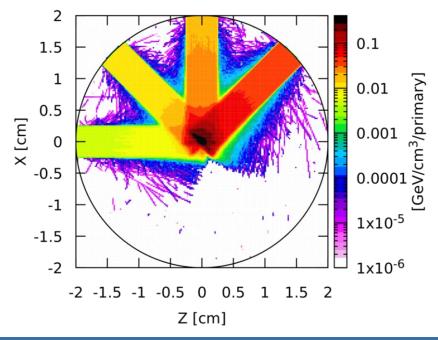
Multiple beam spots – <u>SPOTBEAM</u>

SPOTBEAM spot_id	Beam: Momentum 🔻	p:	Part: 🔻	
	Z: 0	A: 0	lsomer: 0	
∆p: Flat ▼	Δр:	Spot Weight:		
∆¢×: Flat ▼	Δφχ:	∆¢y: Flat ▼	Δφy:	

Angular distribution:

- $\Delta \Phi x$, $\Delta \Phi y$: Defines the beam's angular distribution in the x/y plane, as:
 - Flat: Full width of a rectangular angular distribution centred around the beam axis [mrad]
 - Isotropic: Isotropic distribution (Input as Flat distribution with angle larger than 2π [rad])
 - Gaussian: FWHM of a Gaussian angular distribution [mrad]

Default: $\Delta \Phi x = 0.0$, $\Delta \Phi y = \Delta \Phi x$


BEAMSPOT - Visualisation

Input card: **SPECSOUR – BEAMSPOT**

Example:

R = 2 cm water sphere 47.5 MeV, 2.5 mm cylindrical, proton beams 4 spots, in 45° steps, with 2ⁿ weight

Depostied energy

🌞 BEAM	Beam:	Energy 🔻	E:	0.0475	Part:	PROTON 🔻
∆p: Flat v	Δp:		ΔΦ:	Flat 🔻	ΔΦ:	
Shape(X): Rectangular 🔻	Δx:			Rectangular 🔻	Δy:	
SPECSOUR	Type:	BEAMSPOT 🔻	# spots:	-	Sampling:	Random 🔻
SPOTBEAM 1	Beam:	Momentum 🔻	p:		Part:	
*P	Z:	0	A:	0	Isomer:	0
∆p: Flat 🔻	Δp:		Spot Weight:	1		
Δφx: Flat ▼	Δφχ:		Δφγ:	Flat 🔻	Δφy:	
SPOTPOS 1	X:		y:		Z:	-5
Shape(X): Annular 🔻	Rmin:		Rmax:	0.25		
L SPOTDIR 1	COSX:		cosy:		COSZ:	
	cosBxx:		cosBxy:		cosBxz:	
SPOTBEAM 2	Beam:	Momentum 🔻	p:		Part:	•
	Z:	-	A:	-	Isomer:	0
∆p: Flat ▼	Δp:		Spot Weight:			
Δφx: Flat ▼	Δφχ:		Δφγ:	Flat 🔻	Δφy:	
SPOTPOS 2	X:	5	y:		Z:	-5
Shape(X): Annular 🔻	Rmin:		Rmax:	0.25		
# #define angle2	-	-45				
📮 SPOTDIR 2		=sind(angle2)		0		=cosd(angle2
		=cosd(angle2) cosBxy:	0	cosBxz:	=-sind(angle2
SPOTBEAM 3	Beam:	Momentum 🔻	p:		Part:	•
	Z:	-	A:	-	Isomer:	0
∆p: Flat ▼	Δp:		Spot Weight:			
Δφx: Flat ▼	Δφχ:		Δφγ:	Flat 🔻	Δφy:	
SPOTPOS 3	X:	5	y:		Z:	
Shape(X): Annular 🔻	Rmin:		Rmax:	0.25		
#define angle3		-90				
🛴 SPOTDIR 3		=sind(angle3)		0		=cosd(angle3
		=cosd(angle3	cosBxy:	0	cosBxz:	=-sind(angle3
SPOTBEAM 4	Beam:	Momentum 🔻	p:		Part:	•
	Z:	-	A:	-	Isomer:	0
∆p: Flat v	Δp:		Spot Weight:			
Δφx: Flat ▼	Δφχ:		Δφγ:	Flat 🔻	Δφγ:	
SPOTPOS 4	X:	_	y:		Z:	5
Shape(X): Annular 🔻	Rmin:		Rmax:	0.25		
# #define angle4		-135				
🛴 SPOTDIR 4		=sind(angle4)		0		=cosd(angle4
	cosBxx:	=cosd(angle4) cosBxy:	0	cosBxz:	=-sind(angle4

Further possibilities

Sometimes the **BEAM**, **BEAMPOS**, and **BEAMAXES** cards are not enough

- Special sources available in FLUKA
 - Colliding beams
 - Synchrotron radiation
 - Cosmic rays
 - USRBIN source
- Program your own custom sources (Source routine FLUKA Advanced Course)

2. The FLUKA preprocessor

The FLUKA preprocessor

- A limited, "C"-like preprocessor
- Manipulates the input before execution using directives

- 3 type of directives (starting with: #):
 - Definition:

#define, #undef

• Conditional:

#if, #elif, #else, #endif

• Include:

#include

FLUKA preprocessor - Definition

Directive: #define

- Identifiers <u>without</u> numerical or character value:
 - #define identifier_name
 - Used in conjunction with conditional directives (**#if identifier_name ... #endif**)
 - *identifier_name* can be up to 40 character long
- Identifiers with numerical or character value:
 - #define identifier_name : value
 - The value can be used in any other input card by referencing \$identifier_name and can be up to 40 characters long
 - Can also be used in conjunction with conditional directives

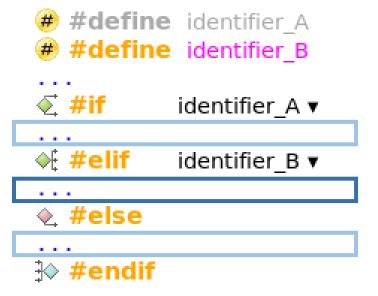
Directive: #undef

- #undef identifier_name
 - Deletes a previously defined identifier

FLUKA preprocessor - Definition

- Identifiers can be *defined* and *referenced* anywhere in the input file
- Example:

#define Momentum	: 0.1		
#define Particle	: PROTON		
* BEAM	Beam: Momentum 🔻	p: \$Momentum	Part: \$Particle 🔻
∆p: Flat ▼	Δp:	Δφ: Flat ▼	Δφ:
Shape(X): Rectangular 🔻	Δx:	Shape(Y): Rectangular 🔻	Δy:


- Note: It is possible to redefine an identifier with a second #define directive
 - This is **NOT RECOMMENDED**
 - If an identifier is redefined, the new value is only applied to cards below
 - The output and error files will contain warning messages

FLUKA preprocessor - Conditional

Directives: #if, #elif, #else, #endif

• To include or exclude parts of the input in conjunction with the **#define** directives

- : ← Inactive identifier
- : ← Active identifier
 - ← Inactive part of input
 - ← Active part of input
 - ← Inactive part of input
- They work similarly to any programming language

Limitation: Cannot compare values, only test if an identifier is defined or not

Can be nested

Limitation: Maximum of 10 nesting levels can be used

FLUKA preprocessor - Conditional

#define NeutronBeam :

🐔 #if 🛛 NeutronBeam	ח ▼		
* BEAM	Beam: Energy 🔻	E: 0.1	Part: NEUTRON 🔻
∆p: Flat ▼	Δp:	Δφ: Flat ▼	Δφ:
Shape(X): Rectan		Shape(Y): Rectangular 🔻	Δy:
★ #else	-		
* BEAM	Beam: Energy 🔻	E: 0.05	Part: PHOTON 🔻
∆p: Flat ▼	Δp:	∆φ: Flat ▼	Δφ:
Shape(X): Rectan	gular▼ ∆x:	Shape(Y): Rectangular 🔻	Δy:
⊮ #endif			
🐔 🐔 🐔 🔍 🐔 🐔 🐔 🔍 🐔	า ▼		
ASSIGNMA	Mat: CONCRETE 🔻	Reg: SHIELD ▼	to Reg: 🔻
	Mat(Decay): 🔻	Step:	Field: 🔻
∗ #else			
ASSIGNMA	Mat: LEAD 🔻	Reg: SHIELD 🔻	to Reg: 🔻
	Mat(Decay): 🔻	Step:	Field: v
∌ #endif			

. . .

FLUKA preprocessor - Conditional

#define NeutronBeam :

#define Energy	: -0.1		
#define Particle	: NEUTRON		
#define ShieldMa	: CONCRETE		
∗ #else			
#define Energy	: -0.05		
#define Particle	: PHOTON		
#define ShieldMa	: LEAD		
⊮ #endif			
* BEAM	Beam: Energy 🔻	E: \$Energy	Part: \$Particle ▼
∆p: Flat ▼	Δp:	∆φ: Flat ▼	Δφ:
Shape(X): Rectangular 🔻	Δx:	Shape(Y): Rectangular 🔻	Δy:
ASSIGNMA	Mat: \$ShieldMa 🔻	Reg: SHIELD ▼	to Reg: 🔻
Mat(Decay): 🔻	Step:	Field: 🔻

FLUKA preprocessor - Include

Directive: #include

- #include <path>/filename.inp *
 - Includes the specified file to the input
 - Can be nested at multiple levels
- The path can be:
 - Relative to the **main input** file
 - Absolute
- Use cases:
 - Split large input files into multiple smaller ones
 - Reuse same input section (beam definition, scoring, etc.) in multiple input files

Back-up slides

Multiple beam spots – <u>SPOTPOS</u>

SPOTPOS (optional)

SPOTPOS spot_id	X:	y:	Z:	
Shape(X): Rectangular 🔻	Δx:	Shape(Y): Rectangular 🔻	Δy:	

Spot definition:

 spot_id: ID number of the beam spot, which this card applies to Note the unusual location of the input field

Beam spot position:

• x, y, z: Position of the beam spot along the x, y, and z axes [cm]

Beam spot shape:

Shape(X), **Shape(Y)**: Defines the spatial distribution of the beam spot, as:

- **Rectangular**: Full beam width in **x/y** direction centred at the beam axis [cm]
- Gaussian: FWHM of a Gaussian distribution in x/y direction centred at the beam axis [cm]

Default: $\Delta x = 0.0$, $\Delta y = \Delta x$

Multiple beam spots – <u>SPOTPOS</u>

SPOTPOS (optional)

SPOTPOS spot_id	X:	y:	Z:	
Shape(X): Annular 🔻	Rmin:	Rmax:		

Beam spot shape (cont.):

Shape(X): Defines the spatial distribution of the beam spot, as:

• Annular: Defines a cylindrical beam shape in the x-y plane

Rmin and Rmax are the radii of the distribution

For circular beam use **Rmin = 0**

Defaults:

If no values or **SPOTPOS** card provided, then the position and shape is taken from the **BEAM** and **BEAMPOS** cards

Multiple beam spots – SPOTDIR

SPOTDIR (optional)

SPOTDIR spot_id	COSX:	cosy:	COSZ:	
	cosBxx:	cosBxy:	cosBxz:	

Spot definition:

• **spot_id**: ID number of the beam spot, which this card applies to Note the unusual location of the input field

Beam spot direction:

• cosx, cosy, cosz: Defines the direction cosines of the beam

Default: Beam direction specified on the **BEAMPOS** card is used

Multiple beam spots – <u>SPOTDIR</u>

SPOTDIR (optional)

SPOTDIR spot_id	COSX:	cosy:	COSZ:	
	cosBxx:	cosBxy:	cosBxz:	

Beam spot coordinate system:

 cosBxx, cosBxy, cosBxz: Defines the direction cosines of the x axis of the beam coordinate system

Default: Beam coordinate system defined on the **BEAMAXES** card is used

If the x axis of the beam spot coordinate system is specified, the z axis will be the beam spot direction, and the y axis will be automatically computed

