

Scoring physics quantities II

Differential spectra (USRTRACK, USRBDX, USRYIELD)

Beginner Course – NEA, November 2023

Fluence vs Current (1/2)

Surface crossing estimation

 Consider the volume generated by a surface S times an infinitesimal thickness *dt*.
 A particle incident with *an angle θ with respect to*

the normal to the surface S travels a segment $dt/cos\theta$ inside the volume.

The average fluence F over the surface S is defined as:

total tracklength inside the volume

volume

• While the average current J over the surface S is given by the number of particles crossing the surface divided by the surface area:

$$J = N/S$$

Fluence vs Current (2/2)

- Fluence is independent of the orientation of the surface S, while current is not !
 - On a flat surface in an isotropic particle field $J = \Phi/2$

- Current is meaningful in case one needs to count particles (e.g. for a signal trigger)
- But to estimate dose, activation, radiation damage, instrument response... the relevant quantity to be used is fluence, since it is proportional to the interaction rate

Main FLUKA estimators

- USRBIN scores the spatial distribution of energy density or fluence (or star* density) in a selection of regions or in a regular mesh (cylindrical, cartesian) described by the user.
- USRTRACK (USRCOLL) scores average $d\Phi/dE$ (differential fluence) of a given type or family of particles in a given region.
- USRBDX scores average $d^2\Phi/dEd\Omega$ (double-differential fluence or current) of a given type or family of particles on a given surface.
- USRYIELD scores a double differential yield of particles on a given surface.
 - The distribution can be with respect to energy and angle, but also other more "exotic" quantities
- All scorings write their results into logical output units assigned by the user
 - Unit numbers must be >20.
 - The only exception is SCORE: its output is printed in the standard output.

* A star is a hadronic inelastic interaction

Scoring example

Results and units

- FLUKA results in *_tab.lis:
 - USRTRACK, USRCOLL: single differential distribution in energy [GeV⁻¹].
 - USRBDX: single differential distribution in energy [GeV⁻¹] (integrated over solid angle).
 In addition, double differential distribution in energy and solid angle [GeV⁻¹ sr⁻¹].
 - USRYIELD: double differential distribution in var₁ and var₂ [var₁unit⁻¹ var₂unit⁻¹].
 - All results are **formatted** \rightarrow Flair can plot from this file.

• FLUKA results in *_sum.lis:

These files include a <u>cumulative distribution</u>, in addition to the above differential distributions. The integration is made w.r.t. the 1st variable (energy for USRTRACK, USRCOLL, USRBDX, and var₁ for USRYIELD).

$$\mathsf{N} = \int \frac{dN}{dE} dE$$

dN/dE: value of each energy bin \rightarrow Useful dE: bin width

 \rightarrow Useful to get integral over an energy range.

- FLUKA results are <u>NOT normalized by region volume [boundary area]</u>.
 For example, as scoring particle *fluence* with USRTRACK [USRBDX, USRYIELD], results will only be in *cm*⁻²:
 - If the user had provided the region volume [boundary area] in the respective card field (before run).
 - Otherwise, if the user applies the desired normalization at post-processing level (e.g. Flair Y Norm).

USRTRACK scoring definition

The merging/processing action will create 3 files for each **USRTRACK** unit:

- demo_scoring_21.trk: binary file containing the merged data from several runs
- demo_scoring_21_sum.lis: ascii file containing energy spectra, and in addition energy-integrated cumulative spectra
- demo_scoring_21_tab.lis: ascii file containing energy spectra \rightarrow Flair uses this file

Plotting – single diff. fluence in volume (USRTRACK)

Scoring II - differential spectra

USRBDX area normalization

$$R_{TARG} = 5 \text{ cm}$$

$$\Delta Z_{TARGS1} = 1 \text{ cm}$$

$$\Delta Z_{TARGS2} = 1 \text{ cm}$$

$$\Delta Z_{TARGS3} = 8 \text{ cm}$$

Area between TARGS2 and TARGS3: $\pi R_{TARG}^2 = 78.5398 \text{ cm}^2$ Area between TARGS3 and INAIR: $2\pi R_{TARG} \Delta Z_{TARGS3} + \pi R_{TARG}^2 = 329.87 \text{ cm}^2$

USRBDX scoring (boundary crossing) definition One-way fluence across **boundary**, Only count particles differential in **energy** (log binning) from TARGS1 to TARGS2 (one-way), By default and **angle** (linear binning) not from TARGS2 to TARGS1 **ONE** angular bin charged hadron <u>fluence</u> at boundaries between target segments (no angular 🛦 USRBDX Unit: 50 BIN 🔹 Name: Sp1ChH distribution) Type: Φ1,LogE,LinΩ • Reg: TARGS1 • to Reg: TARGS2 • Area: 78.5398 Part: HAD-CHAR • Emin: 0.001 Emax: 10.0 Ebins: 40.0 **Ωbins:** Ω max: Ω mn: Unit: 50 BIN 🔹 Name: Sp2ChH Area: 78.5398 Type: Φ1,LogE,LinΩ • Reg: TARGS2 • to Reg: TARGS3 • Part: HAD-CHAR • Emin: 0.001 Emax: 10.0 Ebins: 40.0 Ωbins: Omin: Ω max: charged hadron fluence exiting lead target Unit: 50 BIN • Name: Sp3Ch Type: Φ1,LogE,LinΩ • Reg: TARGS3 • to Reg: INAIR • Area: 329.87 Part: HAD-CHAR • Emin: 0.001 Emax: 10.0 Ebins: 40,0 Ωbins: Qmin Qmax: double-differential charged hadron fluence entering lead target Particle type: Unit: 54 BIN • Name: Sp2ChHA charged hadrons Type: $\Phi_{1,LogE,Lin\Omega}$ Reg: TARGS2 • to Reg: TARGS3 • Area: 78.5398 Part HAD-CHAR • Emin: 0.001 Emax: 10.0 Ebins: 40.0 **3** angular bins Ωbitis: **3.0** Qmin: Ω max:

USRBDX scoring (boundary crossing) output

The merging/processing action will create 3 files for each USRBDX unit:

- demo_scoring_54.bnx: binary file containing the merged data from several runs
 [it can replace the N unformatted estimator files for further postprocessing]
- demo_scoring_54_sum.lis: ascii file containing all information and in addition energyintegrated cumulative spectra
- demo_scoring_54_tab.lis: ascii file containing the double differential fluence and angle-integrated fluence in tabulated form for immediate plotting \rightarrow Flair uses this file

Note: even if only one angular bin was requested, differential spectra are always double differential in GeV⁻¹ **sr⁻¹**

Plotting – single diff. fluence on boundary (USRBDX)

Plotting – single diff. fluence on boundary (USRBDX)

Scoring II - differential spectra

Plotting – double diff. fluence on boundary (USRBDX)

Plotting – double diff. fluence on boundary (USRBDX)

Scoring II - differential spectra

USRYIELD scoring definition

USRBDX and **USRYIELD** both provide **differential spectra across a boundary**.

USRYIELD provides a richer choice of weights (see "Kind") and differential variables (see "ie" and "ia").

NB: **USRYIELD** can additionally be used to score yields of particles emerging from inelastic hadronic interactions with single nuclei (note shown here).

Summary

- USRTRACK, USRBDX and USRYIELD are scoring cards which allow to get differential spectra.
- Score tracklength density in a volume single differential in energy
 - \rightarrow USRTRACK
- Score fluence or current across a boundary single differential in energy, or double differential in energy and angle with boundary normal → USRBDX
- Score particles count across a boundary in a more customized way: more complex weights, or differential variables other than energy / angle with boundary normal (e.g. angle with beam direction, LET, ...), etc → USRYIELD
- It is the user responsibility to ensure normalization by region volume / boundary area.

