
Beg i n n er co u rse – NEA, No vemb er 2023

Source routines

An introduction to a new approach to source routines

Why user routines?

• FLUKA offers plenty of built-in tools to define primary beams and estimate
quantities

• Sometime these are not enough

• There is the need to write some dedicated code: a “User Routine”

• URs are beyond the scope of this course because of intrinsic difficulties

• Nevertheless, we have started an effort to make URs more user-friendly

• We want to introduce here the first effort in this direction:

a modernized version of the source routine

• Why the source routine first? Built-in options allow to sample from a limited number

of distribution and not from histograms. This is an effort to overcome this limitation

Source routine 2

The “old” source routine

• Scary for beginners, limited documentation

• Use of IMPLICIT and FORTRAN77 naming convention

Source routine 3

The “new” source routine

• Distributed since FLUKA4-1.0 release

• Simplified appearance

• Long & meaningful names for variables and routines

• Use of implicit none (see later)

• Abundant comments and examples

• Advanced sampling routines

• Variables for user’s usage clearly indicated

• Lines not to be edited are “hidden” in routines

in the source_library.inc library file

• Old source routines can still be used

Source routine 4

Removed from
snapshot

The “new” source routine

• Without removing comments, examples and advanced features

(notice the ratio of code and comment lines)

• Note: the snapshot is not meant to be read – Detailed view will follow

Source routine 5

Source routine – Initialization

• Dedicated space for the declaration of user variables (and functions)

Source routine 6

Source routine – Initialization

• Initialization of internal variables

• Only performed the first time the routine is called

• To overwrite the default values the relevant lines needs to be uncommented, by
removing the ‘*’ at the beginning of the line.

(See next slides)

Source routine 7

Source routine – Primary particle

• By default, the particle type given in the BEAM card is taken

• Particle codes explained in FLUKA manual section 5.1

• Possible application: beam made of more than one type particles

Source routine 8

• Only used if primary particle is set to HEAVYION or ISOTOPE

• Default values are set on the HI-PROPE card, or for 12C if the card is missing

Source routine – Energy / momentum

• By default, the particle momentum is expected

• The default value is based on the BEAM card

(Automatically converted into momentum if energy is given on the BEAM card)

• If energy is specified in the source routine, the following logical value must be set
.true.

Source routine 9

• The momentum divergence set on the BEAM card is not retained

• It in necessary to specify in the source routine

• It is easy with the supplied functions / subroutine

Flat spectrum:

Gaussian spectrum:

Maxwell-Boltzmann spectrum:

Spectrum from histogram:

Exponential spectrum:

(biased sampling)

Source routine – Energy / momentum

Source routine 10

Source routine – Particle weight

• Monte Carlo concept for biased sources

• The default value (particle_weight = 1.0) is usually sufficient

• Not for a beginners’ use, mentioned here for completeness

• Note: The exponential spectrum sampling subroutine, uses variable particle weight

Source routine 11

Source routine – Beam divergence

• By default:

• values are taken from the BEAM card

• It is assumed to be a flat angular distribution

• For Gaussian divergence the following logical value must be set .true.

Source routine 12

Source routine – Beam starting position

• By default, values are taken from the BEAMPOS card

• Beam shape set on the BEAM card, and

• Extended sources specified on additional BEAMPOS cards are not implemented

Source routine 13

• Some predefined routines (2 functions and 1 subroutine) are already available:

Flat distribution:

Gaussian distribution:

Annular distribution:

Remember the values must be in double precision (1.0D0).

Note: If annular sampling is used, the coordinates has to be set manually as well.

Source routine – Beam starting position

Source routine 14

• By default, values are taken from the BEAMPOS card

• If the direction_flag is set to:

• 0 : All three values are considered and the they are normalized automatically (Default)

• 1 : The manually set value of the z direction is disregarded. Instead, it is calculated from the x

and y direction cosines with a positive sign.

• 2 : As with option 1, but negative sign is used.

• A predefined subroutine is are already available for isotropic direction sampling

Source routine – Beam direction

Source routine 15

• To help debug the source routine, the major particle parameters can be printed

• To enable this feature, set

• The printed parameters:

• Energy / momentum

• Coordinates

• Direction

• Weight

• The number of primaries printed can be set with:

Source routine – Debugging

Source routine 16

Some predefined FLUKA random sampling routines

Source routine 17

• FLUKA offers some useful, predefined routines for random sampling

• my_variable = FLRNDM(XDUMMY)

Assigns a 64-bit random number in [0,1)

• call FLNRRN(gauss1)

Returns a Gaussian distributed random number

• call FLNRR2(gauss1,gauss2)

Returns two uncorrelated Gaussian distributed random numbers

• call SFECFE(sint,cost)

Returns sine and cosine of a random azimuthal angle

SOURCE card and passing parameters

Source routine 18

• To invoke a source routine, it is necessary to add a SOURCE card

• A SOURCE card can be empty or can be used to pass parameters to the routine

• Max. 18 numerical values (WHASOU(ii)) and 1 string (max. 8 characters)

(SDUSOU) can be

• Good practice advice:

Even if the beam energy / momentum is defined in the source routine,

specify it in the BEAM card as it is used for internal initialization.

Set a momentum value higher than the maximum possible one.

Adding the user routine to the project folder

Source routine 19

1. Open [Compile] tab

2. It is maybe hidden in the

dropdown menu

3. Click the [Database] button

(Use [Add] for an existing file)

4. Select the user routine you

want to use

5. Click [Copy to Project]

The copied user routine will be in

the Flair projects directory

Compiling a custom FLUKA executable

Source routine 20

1. Verify that the user routine is in

the list

2. Name your custom executable

3. Select the appropriate linker:

a. Use lfluka by default

b. Use ldpmqmd if DPMJET or

RQMD models are needed

4. Compile the executable

The custom executable should be

set default on the [Run] tab

automatically

Time to do some hands-on practice!

Source routine 21

• We will now see together a few small examples of the “new” source routine

xkcd.com/303

FORTRAN primer

Source routine 23

History of Fortran

Fortran born in the early 1950s, and the first compiler was released in 1957

Standards:

• Fortran 66 – The first standard

• Fortran 77 – Extension on Fortran 66

• Fortran 90 – Dynamic memory allocation

• Fortran 95 – High performance Fortran specification

• Fortran 2003 – Object oriented programming

• Fortran 2008 / 2018 – Extensions of Fortran 2003

Source routine

“Modern” Fortran

Introduction of the Free format

24

File format

• Fortran 77 uses the Fixed file format (extensions: .f or .for):

• Maximum 72 characters in one line

• First 6 are reserved for special function:

• If the first character is ‘c’, ‘C’ or ‘*’, then the line is a comment

• The 1st – 5th characters can be used for statement labels

• If the 6th position is not empty, then the line is treated as a continuation of the previous one

(Often the ‘&’ character is used)

Source routine

*...5....0....5....0....5

program hello

c This is a comment

print *, 'Hello,

& World!'

end program hello

25

File format

• Fortran 90 introduced the Free format (extensions: .f90, [.f95, etc.]):

• Code can start at the 1st column

• Inline comments with ‘!’

• Continuation lines

• Note: It is not possible to mix both formats in a single source file.

The compiler expects the “correct” format based on the file extension.

Source routine

program hello

print *, 'Hello,&

& World!' ! This is a comment

end program hello

26

Variable and procedure names

• Fortran 77:

• Limited to 6 alphanumerical characters

• Have to start with a letter

• Case insensitive

• Starting with Fortran 90:

• Can be up to 31 character long

• Can contain letters, numbers and underscore (‘_’)

• Have to start with a letter

• Case insensitive

• Note: Try to use descriptive names, to make code readable

Source routine 27

Variable declaration

• Fortran by default uses implicit declaration, which means the type of the variable
(integer, real, etc.) is determined by a preset rule.

• The default rule is:

• If the variable starts with the letter ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, or ‘N’ it is an integer

• Otherwise, it is a real (single precision float)

• It is possible (and necessary) to overwrite this with explicit declaration, where you

manually specify another variable type, like:

Source routine

double precision :: my_number

logical :: my_flag

28

Issues with implicit declaration

• Typos remain hidden

If you have a typo in a variable name, the compiler won’t raise an error

It is a different, but valid variable usually without a value

Using it in calculations will lead to unexpected results

• Unexpected type conversion

For example: Information is lost if you want to assign a double precision number to integer

variable

• Solution

Force explicit declaration with the statement:

Source routine

implicit none

29

Comparison of Fortran 77 and 90+

• FLUKA user routines are somewhere in-between

Implicit declaration using double precision numbers instead of reals

• Modernization effort for a future release

A new version of the source routine is already available (fixed format, forced explicit declaration)

Source routine

Fortran 77 Fortran 90+

Format Fixed (.f, .for) Free (.f90, .f95, …)

Maximum line length 72 132

Variable name max. length 6 31

Variable declaration (usually) implicit forced explicit

30

Variables

• Declaration: • Assignment:

Source routine

integer :: amount, counter

real :: pi, sqrt_two

double precision :: energy

complex :: frequency

character :: initial

logical :: okay

amount = 10

pi = 0.3141592e1

energy = 1.0d-3

frequency = (1.0, -0.5)

initial = ’F’ ! Or ”F”

okay = .true. ! Or .false.

31

Arrays and strings

• Arrays: • Strings:

Source routine

! 1D integer array

integer, dimension(10) :: array1

! An equivalent array declaration

integer :: array2(10)

! 2D real array

real, dimension(10, 10) :: array3

! Custom lower and upper

! index bounds

real :: array4(0:9)

real :: array5(-5:5)

character(len=10) :: string1

! Or

character(10) :: string2

string2 = ’FLUKA’

Note: Strings are padded with “space” to the
specified length, i.e. ’FLUKA ’.

To omit the padding use the trim() function

32

Logical operators

• Relational operators:

Equal:

a .eq. b a == b

Not equal:

a .ne. b a /= b

Greater than:

a .gt. b a > b

Less than:

a .lt. b a < b

Greater than or equal:

a .ge. b a >= b

Less than or equal:

a .le. b a <= b

• Logical operators:

.true. if both operands are .true.:

a .and. b

.true. if one of operands is .true.:

a .or. b

.true. if the operand is .false.:

.not. a

.true. if the operands are the same:

a .eqv. b

.true. if the operands are the opposite:

a .neqv. b

Source routine 33

Conditional (if) and loop (do) constructs

• Conditional (if) construct:

• Conditional loop (do while):

• Loop (do) construct:

• Loop with skip:

Source routine

if (angle < 90.0) then

print *, ‘Angle is acute‘

else if (angle > 180.0) then

print *, ‘Angle is reflex‘

else

print *, ‘Angle is obtuse‘

end if

integer :: i

do i = 1, 10

print *, i

end do

do i = 1, 10, 2

! Print only odd numbers

print *, i

end do

i = 1

do while (i < 11)

print *, i

i = i + 1

end do

34

Procedures

• Functions:

Invoked within an expression or assignment

Returns a value

• Subroutines:

Invoked by a call statement

No return value

Source routine

subroutine print_mx(n, m, A)

integer :: n, m

integer :: i

real :: A(n, m)

do i = 1, n

print *, A(i, 1:m)

end do

end subroutine print_mx

real :: mat(3, 4)

...

call print_mx(3, 4, mat)

integer function cube(i)

integer :: i

cube = i**3

end function cube

program main

integer :: cube

integer :: i, j

i = 3

j = cube(i)

end program main

35

Passing arguments to procedures

• Many programming languages by default only pass the values of the arguments to

the procedures.

Meaning, changing the value in the procedure doesn’t have any effect on the value

of the original argument.

• However in Fortran, the arguments by themselves are passed to the procedures.

This means, the changes made to the values of the arguments will remain after the

procedure completes.

• Useful when more than one value must be returned.

• Safe practice: Only use functions which don’t change the arguments. Otherwise use

subroutines.

Source routine 36

Save statement

• Variables declared with the save statement retain their value between calls to

procedures

• This allows to create sections of code which only executed at the first call

Source routine

integer, save :: amount

real, dimension(10), save :: array

logical, save :: lfirst = .true.

integer, save :: reg_number

integer :: ierr

if (lfirst) then

call geon2r(’TARGET ’, reg_number, ierr)

lfirst = .false.

end if

37

Opening files

• To open a file in Fortran:
open(unit=<unit>, file=‘<filename>‘, status=‘<status>‘, form=‘<form>‘)

Unit number: used to reference the file in the read/write comments

• Some units numbers are predefined

• FLUKA specific: Unit numbers ≤ 20 and the ones in scorings can’t be used

• FLUKA subroutine: Looks for the file in multiple directories
call oauxfi(‘<filename>‘, <unit>, ‘<form_and_status>‘, <ierr>)

• FLUKA OPEN card:

Source routine 38

Input from files

• Reading from a file:
read(<source>, ‘format‘) a, b, …

Source: Unit number or a string

Format: Use the default *. Fortran will try to figure it out based on the type of the variables

Source routine

real, dimension(20) :: a, b

integer :: i

open(unit=21, file=‘input.dat‘, status=‘old‘, form=‘formatted‘)

do i = 1, 20

read(21, *) a(i), b(i)

end do

39

Output to files

• Writing to a file:
write(<target>, ‘format‘) a, b, …

Target: Unit number or string

Format: The default is * for automatic formatting

Predefined units for writing to the FLUKA output files:

Source routine

integer :: i

open(unit=22, file=‘output.txt‘, status=‘new‘, form=‘formatted‘)

do i = 1, 10

write(22, *) i, cube(i)

end do

.out file:
write(lunout, *) a, …

.err file:
write(lunerr, *) a, …

.log file:
write(*, *) a, …

40

I/O formatting

• The format string lists the format specifiers for the printed variables and it is

enclosed in round brackets:
‘(A10, 5X, I4, /, F8.3, E15.7)‘

Source routine

• Integer:
‘(Iw)‘

w characters long

• Real:
‘(Fw.d)‘

w characters long,

fractional part d characters

‘(Ew.d)‘

Exponential form, w characters long,

fractional part d characters

• String:
‘(Aw)‘

w characters long

• Blank space:
‘(nX)‘

n characters long

• New line:
‘(/)‘

41

Source routine

xkcd.com/844

42

