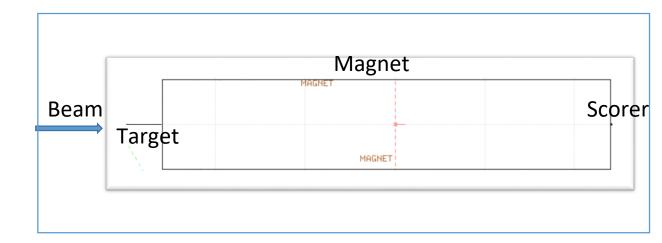


Secondary Beam Lines Exercise Solutions


First complete beam line in FLUKA

Secondary Beam Lines

Solutions for secondary beam lines exercise:

 Built the main components as described in the exercise task.

Set the Magnet region to magnetic

SBL exercise solutions – Input File

Preparation of the input file:

Activated the magnetic option in field

SASSIGNMA

Mat: VACUUM ▼ Reg: MAGNET ▼ to Reg: ▼

Mat(Decay): ▼ Step: Field: Magnetic ▼

```
Scoring particles with usrtrack, neutrons in this case

WUSRTRACK

Unit: 21 BIN ▼

Name: scoren

Type: Log ▼

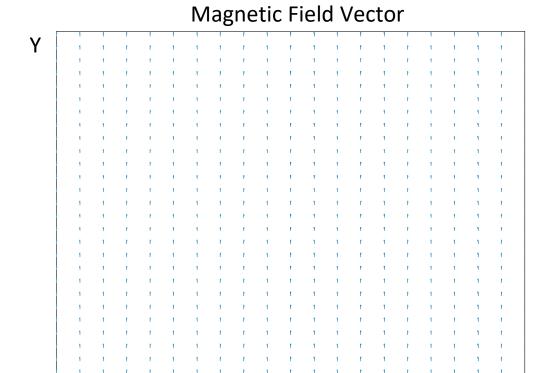
Reg: SCORE ▼

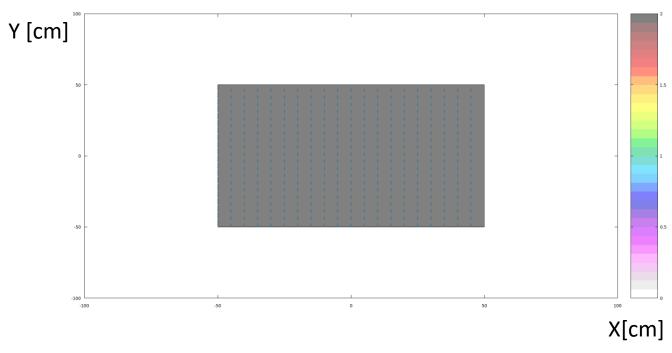
Vol: 1

Part: NEUTRON ▼

Emin: 50.

Emax: 400.

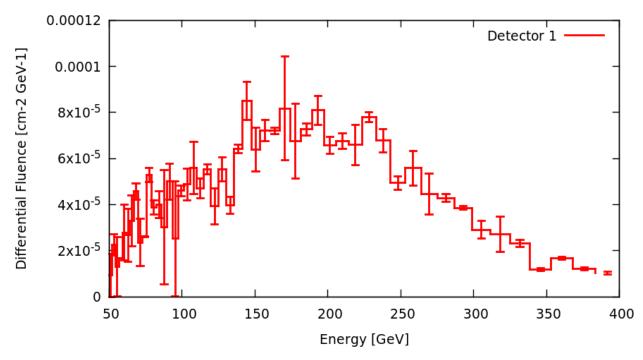

Bins: 50
```



SBL exercise solutions

Plotting Field

• In Flair Plot tab, check magnetic field:


Χ

SBL exercise solutions

Plotting particles spectra

- In Flair Plot tab, plot spectra:
 - The bending magnet sweeps away all the charged particles, therefore we can only see neutrons with the defined scorer.

Neutrons Spectrum for 100000 primaries

SBL exercise solutions – Optional Task

Calculating scoring volume size

• ϑ [rad] can be found using our values:

$$\vartheta[rad] = (0.29979 * 2[T] * 5[m])/400[\frac{GeV}{c}] \sim 7 \text{ mrad}$$

To see the displacement in x we can use:

$$x = L/2*\vartheta \sim 2cm$$

 Our detector has to therefore have an extension in x less than 2 cm in order to not detect primaries at 400 GeV/c.

SBL exercise solutions – Optional Task

Adding Shielding

The shielding and detector are added to the geometry:

 The fluence can be checked placing a USRTRCK card in the detector volume as done before:

