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”Standard” Model Recap Lattice QCD Scale Setting Action QC2D Thermodynamics C2s Conclusion

”Of these four forces, there’s one we don’t really understand.” ”Is it the weak force or the
strong–” ”It’s gravity.”

1
1https://xkcd.com/1489/

https://xkcd.com/1489/
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Euclidean QCD Lagrangian given by

LQCD =
1

4
TrGµνGµν + ψ̄ [γµ (∂µ + igsAµ) +m]ψ (1)

ψf ,α,c is the quark field with flavour index f , Dirac index α and colour index c.
Aµ = AaµTa is the gluon field
Field strength Gµν = GaµνTa, where

Gaµν = ∂µAaν − ∂νAaµ + gsfabcAbµAcν

For gs � 1 can use perturbation theory (very high temperature/very short
distances)
For gs ∼ 1 or non-perturbative phenomena must use non-perturbative
approach
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A sketch of the QCD Phase Diagram
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Want to solve the path integral

〈O〉 = 1

Z

∫
D [Φ]O[Φ]e−S[Φ] (2)

Space-time itself is discretised
4-Dimensional Lattice with periodic boundary conditions.
Fermions lie on vertices, gauge bosons on the links
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Gluon fields:

Aµ(x) ∈ su(N) (3)
Uµ(n) ∈ SU(N) (4)

Gauge Action:

Sg [A] = − 1

2g2

∫
d4xGaµνGaµν (5)

Sg [U] = − a4

2g2
∑
n∈Λ

TrGµν(n)Gµν(n) (6)

This discretisation is not unique
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Fermion Action:

SF
[
ψ, ψ̄,A

]
=

Nf∑
f=1

∫
d4xψ̄(f)(x)

(
γµ (∂µ + iAµ(x)) +m(f)

)
ψ(f)(x) (7)

SF [ψ, ψ̄,U] =

a4
∑
n∈Λ

Nf∑
f=1

ψ̄(f)(n)

 4∑
µ=1

γµ
Uµ(n)ψ(f)

µ (n+ µ̂)− U†
µ(n− µ̂)ψ(f)(n− µ̂)

2a
+mψ(f)(n)


(8)
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ν̂

µ̂

n Uµ(n)

Uν(n+ µ̂)

U−µ(n+ µ̂+ ν̂)

U−ν(n+ ν̂)

Figure: A Plaquette.

Bosonic observables represented by closed
loop on the lattice (Wilson loop)
Closed loop in temporal extent (Polyakov
loop) is order parameter for deconfinement
Simplest closed loop is a 1× 1 square called
a plaquette

Uµν(n) =
Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂) =

Uµ(n)Uν(n+ µ̂)U†
µ(n+ ν̂)U†

ν(n) (9)
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Generating Configurations

Gauge configurations produced with probability weight

e−S[U] = detM[U]e−Sg [U] (10)

using Hybrid Monte Carlo (HMC). M [U] fermion matrix.
Metropolis algorithm is inefficient. Updates one site per step.
updating all sites naïvely gives very large changes to action
HMC involves a global update in a fictitious time τ defined by Hamiltonian
instead.
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Generating Configurations

1 Generate pseudofermion field Ψ

2 Use gauge configuration U to generate conjugate momentum field P
according to the Gaussian Distribution exp

(
−TrP2

)
3 Evolve Hamiltonian using leapfrog
4 Accept or reject the new configuration using the acceptance probability

min (1, exp (−δH))

Fun Fact!
For an exact calculation, δH = 0 due to energy conservation so all fields would be
accepted.
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Observables on the lattice are dimensionless, must set the scale to give a
physical meaning.
Choose an observable and use it to fix scale.
We use string tension σ = (440MeV)2 and compare using static quark
potential.

Ensemble β κ a (fm) mπ
mρ

mπ (MeV)
V. Coarse 1.7 0.178 0.233 0.779(4) 688(11)

Coarse 1.9 0.1680 0.178(6) 0.805(9) 717(25)

Light 1.7 0.1810 0.189(4) 0.61(5) 638(33)

Fine 2.1 0.1577 0.138(6) 0.810(7) 637(28)

Light-Fine

Table: Table of lattice parameters, lattice spacings and pion masses



”Standard” Model Recap Lattice QCD Scale Setting Action QC2D Thermodynamics C2s Conclusion

Observables on the lattice are dimensionless, must set the scale to give a
physical meaning.
Choose an observable and use it to fix scale.
We use string tension σ = (440MeV)2 and compare using static quark
potential.

0 2 4 6 8 10 12 14

ar

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
(r

)

Figure: Static Quark Potential for β = 2.0, κ = 0.1642 on a 163 × 32 lattice.
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Observables on the lattice are dimensionless, must set the scale to give a
physical meaning.
Choose an observable and use it to fix scale.
We use string tension σ = (440MeV)2 and compare using static quark
potential.

Ensemble β κ a (fm) mπ
mρ

mπ (MeV)
V. Coarse 1.7 0.178 0.233 0.779(4) 688(11)

Coarse 1.9 0.1680 0.178(6) 0.805(9) 717(25)

Light 1.7 0.1810 0.189(4) 0.61(5) 638(33)

Fine 2.1 0.1577 0.138(6) 0.810(7) 637(28)

Light-Fine 2.0 0.1640 0.118(1) 0.63(2) 0.333(3)

Table: Table of lattice parameters, lattice spacings and pion masses
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1 Produce gauge configs for chose of β and κ.
2 Calculate pseudoscalar/vector correlators and extract mass ratio.
3 Evaluate Wilson Loops/Lines numerically
4 Fit Wilson lines to form

W(r, τ) = Ae−V(r)τ (11)

with fit parameters A and V(r)
5 Fit V(r) to the Cornell Form in lattice units

aV(r) = aV0 +
α( r
a
) + a2σ r

a
(12)
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Momentum Space Massless Free Fermion Propagator

D̃(p)−1

∣∣∣∣∣
m=0

=

i
4∑

µ=1
γµpµ

p2
(13)

D̃(p)−1

∣∣∣∣∣
m=0

=

ia−1
4∑

µ=1
γµ sin (pµa)

a−2
4∑

µ=1
sin2(pµa)

(14)
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Continuum has pole at p = 0 ⇒ a fermion!

Continuum has pole at pµ ∈ {0, πa} ⇒ 16 fermions!
Who ordered those!?!

This is the infamous fermion doubling problem. Techniques for removing
these doublers include

Wilson Fermions (increase mass of doublers so they decouple from the theory)
(Rooted) Staggered Fermions (mixes Dirac and space-time indices)
Domain Wall Fermions (construct chiral fermions on a 4D interface of a 5D
lattice)

Want translational invariance, hermiticity and locality; you get an equal
number of left and right handed fermions. No-Go Theorem!2

This work uses Wilson Fermions, which explicitly break chiral symmetry.

2Nielsen and Ninomiya 1981.
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Wilson Fermions

Want to distinguish between the real pµ = 0 pole and the pµ = π
a poles

Add term to momentum space Dirac operator that is
1 0 if pµ = 0
2 Non-zero if pµ = π

a
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Wilson Fermions

Naïve Dirac operator given by

D̃(p) = m+
i
a

4∑
µ=1

γµ sin(pµa) (15)

Instead consider

D̃(p) = m+
i
a

4∑
µ=1

γµ sin(pµa) +
1

a

4∑
µ=1

(1− cos (pµa)) (16)

For pµ = π
a , we get an additional ”mass” of

2(d−1)
a

In a → 0 limit these extra masses are infinite so decouple
Chiral symmetry is explicitly broken by the Wilson term
Get order O(a) discretisation errors
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Wilson Fermions

But we can do better!!!
Let

Qµν = Uµ,ν(n) + Uµ,−ν(n) + U−µ,−ν(n) + U−µ,ν(n) (17)

Then the Symanzik Improved action of the form

SI = SWilson + cswa5
∑
n∈Λ

∑
µ<ν

¯ψ(n)1
2
σµν

(
i

8a2
(Qµν(n)− Qνµ(n))

)
ψ(n) (18)

has discritisation errors of O(a2)
This is a work in progress
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Wilson Fermions

ν̂

µ̂

n
Uµ(n)

Uν(n+ µ̂)

U−µ(n+ µ̂+ ν̂)

U−ν(n+ ν̂)

Uµ(n− µ̂)

Uν(n)

U−µ(n+ ν̂)

U−ν(n+ ν̂ − µ̂)

Uµ(n)

Uν(n+ µ̂)

U−µ(n+ µ̂+ ν̂)

U−ν(n+ ν̂)

Uµ(n− ν̂ − µ̂)

Uν(n− ν̂)

U−µ(n)

U−ν(n− µ̂)

Figure: Clover action
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Justifying my Existence

Want to study QCD at non-zero density (RHIC, Neutron Stars etc.)
Add chemical potential µ ∈ R to action?

Then

e−S[U] = detM[U]e−Sg [U] ∈ C

Complex probability density…
Solutions?

Use θ = iµ instead
Complex Langevin
Lefschetz thimbles
Taylor expand in µ around µ = 0

Cheat?



”Standard” Model Recap Lattice QCD Scale Setting Action QC2D Thermodynamics C2s Conclusion

Justifying my Existence

Want to study QCD at non-zero density (RHIC, Neutron Stars etc.)
Add chemical potential µ ∈ R to action? Then

e−S[U] = detM[U]e−Sg [U] ∈ C

Complex probability density…
Solutions?

Use θ = iµ instead
Complex Langevin
Lefschetz thimbles
Taylor expand in µ around µ = 0

Cheat?



”Standard” Model Recap Lattice QCD Scale Setting Action QC2D Thermodynamics C2s Conclusion

Justifying my Existence

Want to study QCD at non-zero density (RHIC, Neutron Stars etc.)
Add chemical potential µ ∈ R to action? Then

e−S[U] = detM[U]e−Sg [U] ∈ C

Complex probability density…

Solutions?
Use θ = iµ instead
Complex Langevin
Lefschetz thimbles
Taylor expand in µ around µ = 0

Cheat?



”Standard” Model Recap Lattice QCD Scale Setting Action QC2D Thermodynamics C2s Conclusion

Justifying my Existence

Want to study QCD at non-zero density (RHIC, Neutron Stars etc.)
Add chemical potential µ ∈ R to action? Then

e−S[U] = detM[U]e−Sg [U] ∈ C

Complex probability density…
Solutions?

Use θ = iµ instead
Complex Langevin
Lefschetz thimbles
Taylor expand in µ around µ = 0

Cheat?



”Standard” Model Recap Lattice QCD Scale Setting Action QC2D Thermodynamics C2s Conclusion

Justifying my Existence

Want to study QCD at non-zero density (RHIC, Neutron Stars etc.)
Add chemical potential µ ∈ R to action? Then

e−S[U] = detM[U]e−Sg [U] ∈ C

Complex probability density…
Solutions?

Use θ = iµ instead
Complex Langevin
Lefschetz thimbles
Taylor expand in µ around µ = 0
Cheat?



”Standard” Model Recap Lattice QCD Scale Setting Action QC2D Thermodynamics C2s Conclusion

Justifying my Existence

QC2D

Use SU(2) instead of SU(3)?

Then for Nf even
detM[U]e−Sg [U] ∈ R+

0

so can use HMC
Theory is qualitatively similar showing QCD properties such as
deconfinement and chiral symmetry breaking.
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Justifying my Existence

QC2D

DISCLAIMER!!!!
We are NOT claiming that the strong force actually follows SU(2) instead of
SU(3).
We are merely using SU(2) to probe an otherwise inaccessible régime using
lattice techniques, much like running 2-d instead of 3-d simulations.
The individual quarks are still fermionic.
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Justifying my Existence

Things to keep in mind

Lattice coupling β = 2Nc
g2 will have smaller value than seen in real QCD.

Max 10 flavours to have asymptotic freedom (vs up-to 16 in three-colour QCD)
Baryons are now quark-quark pairs (diquarks), so follow Bose-Einstein
Statistics3

BEC phase appears at high density
Now get 5massless Goldstone bosons in the chiral limit.

3This makes people really uncomfortable
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Now get 5massless Goldstone bosons in the chiral limit.

3This makes people really uncomfortable
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These results were first presented at XQCD 2022 and XV QCHS Conference4

Using a spatial extent Ns = 24

Conducted a temperature scan on coarse lattice at aµ = 0.400

Temperature is given by
T =

1

aτNτ
(19)

Varying the number of sites along the time direction allows us to complete a
temperature scan

4Lawlor et al. 2022.
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Superfluid Transition

Molecular dynamics requires
inverting a large sparse matrix via
conjugate gradient. a

At non-zero baryon density, fermion
matrix acquires non-zero density of
very small eigenvalues, slowing
down the computation
Diquark source j lifts these
eigenvalues, with ”physical” results
recovered by extrapolation of j to
zero.

ai.e. make supercomputer go brrr
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Superfluid Transition
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Diquark condensate vs Temperature

The superfluid
phase transition
occurs around
T ∼ 100MeV.
This indicates that
the superfluid
phase transition is
indeed distinct
from the
deconfinement
crossover.
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Bosonic Observables
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to decreasing at T ∼ 150MeV suggests
that the crossover coincides with the
deconfinement crossover, not the
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Neutron Star (NS)

Equation of State (EoS) of dense
nuclear matter an unanswered
question
NS form natural labs for exploring
dense nuclear matter
Measurements of NS tidal
deformabilities using Gravitational
Wave (GW) indicates EoS soft at
nuclear densities.
Pulsar observations indicate stiff
EoS at M > 2M�. Non-monotonic
Cs?

CEFT Dense NM Pert. QM CFTs
c2s � 1 [0.8, 1] . 1/3 1/3

Table: C2
s predictions in four different limits.a

aAnnala et al. 2023.
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Table: Radius constraints for neutron stars for ' 1.4M� and ' 2.1M� NSs. taken from
Minamikawa et al. 2023

radius [km] mass [M�]
GW170817 (primary) 11.9+1.4

−1.4 1.46+0.12
−0.10

GW170817 (second) 11.9+1.4
−1.4 1.27+0.09

−0.09

J0030+0451 (NICER) 13.02+1.24
−1.06 1.44+0.15

−0.14

J0030+0451 (NICER) 12.71+1.14
−1.19 1.34+0.15

−0.16

PSR J0740+6620 (NICER) 12.35+0.75
−0.75 2.08+0.07

−0.07

PSR J0740+6620 (NICER) 12.39+1.30
−0.98 2.08+0.07

−0.07
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Recent results (Kojo and Suenaga 2022) indicate QC2D is applicable NS
studies.
First principles calculation of C2

s using QC2D
Coarse lattice parameters. 123 × 24 ⇒ T ≈ 50MeV
Work in progress. No diquark extrapolation
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Pressure

C2
s =

dP
dε

(20)

Energy Density ε has fermionic and baryonic component

εg =
3β

Nc
Re

(
TrUij − TrUi0

)
(21)

εq = κ
〈
ψ̄D0ψ

〉
(22)

Two different approaches for pressure
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Pressure

Integral Method

P(µ) =
µ∫

0

nq(µ′)dµ′ (23)

nq(µ) has form of cubic polynomial
Fit nq(µ), extract coefficients and integrate analytically.
Currently use polynomial interpolation, cubic spline on the cards.
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Pressure

Integral Method
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Figure: Quark and Energy Number Densities
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Tµµ

Derivative Method

Conformal Anomaly
Tµµ = ε− 3p (23)

Can find P from conformal anomaly
Calculate gluonic and fermionic components separately.

Tgµµ = −3a
Nc

∂β

∂a
Re

(
TrUij + TrUi0

)
(24)

Tqµµ = −a∂κ
∂a
κ−1

(
4NfNc −

〈
ψ̄ψ

〉)
(25)

Needs fewer configurations
Karsch Coefficients need different lattice spacings.
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Tµµ
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Figure: Unrenormalised Conformal Anomaly
evaluated using the derivative and integral
method, with the gluonic and fermionic
components shown for the derivative
method.
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C2s
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Figure: Speed of sound squared calculated using derivative and integral methods.
Calculated using a 123 × 24 coarse lattice. Results are consistent with Iida and Itou 2022
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Summary and bucket list

The superfluid phase transition and deconfinement crossover are distinct
Speed of sound exceeds the conformal limit. EoS stiff at intermediate
densities?

Work underway to implement a Symanzik improved fermion action
QC2D phase diagram for light-fine configuration also on the agenda
Get the code to actually run correctly on GPUs
EuroHPC benchmark access just awarded (LUMI-C/Vera).
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