On the speed of sound in dense two colour QCD A Quick Update

Dale Lawlor¹, Simon Hands², Seyong Kim³, Jon-Ivar Skullerud¹

¹Department of Theoretical Physics; National University of Ireland, Maynooth ²Department of Mathematical Sciences; University of Liverpool ³Department of Physics; Sejong University

> ITPQFTM+ 2023 National University of Ireland, Maynooth

2 Scale Setting

- 3 Lattice Action
- 4 Why Two Colour QCD (QC_2D)?
- 5 Thermodynamic Results
- 6 Neutron Star Speed of Sound

"Standard" Model Recap ●00

QCD

icale Settin

l

Thermodynamics

C₅²

Conclusion 0

"Of these four forces, there's one we don't really understand." "Is it the weak force or the strong—" "It's gravity."

¹https://xkcd.com/1489/

"Standard" Model Recap	Lattice QCD	Scale Setting	
000			

QC2D 000

Thermodynamics

C5 00000000 Conclusion

Euclidean QCD Lagrangian given by

$$\mathscr{L}_{QCD} = \frac{1}{4} \operatorname{Tr} \mathbf{G}_{\mu\nu} \mathbf{G}_{\mu\nu} + \bar{\psi} \left[\gamma_{\mu} \left(\partial_{\mu} + i g_{\mathsf{s}} \mathbf{A}_{\mu} \right) + \mathbf{m} \right] \psi \tag{1}$$

"Standard" Model Recap ⊙●○	Lattice QCD 000000	Scale Setting 00	Action 0000	$\begin{array}{c} QC_2D\\ \circ\circ\circ\circ\end{array}$	Thermodynamics 00000	Conclusion O

Euclidean QCD Lagrangian given by

$$\mathscr{L}_{QCD} = \frac{1}{4} \operatorname{Tr} \mathbf{G}_{\mu\nu} \mathbf{G}_{\mu\nu} + \bar{\psi} \left[\gamma_{\mu} \left(\partial_{\mu} + i g_{\mathsf{s}} \mathbf{A}_{\mu} \right) + \mathbf{m} \right] \psi \tag{1}$$

• $\psi_{f,\alpha,c}$ is the quark field with flavour index f, Dirac index α and colour index c.

"Standard" Model Recap	Lattice QCD			QC_2D			Conclusion
000	000000	00	0000	000	00000	00000000	

Euclidean QCD Lagrangian given by

$$\mathscr{L}_{QCD} = \frac{1}{4} \operatorname{Tr} \mathbf{G}_{\mu\nu} \mathbf{G}_{\mu\nu} + \bar{\psi} \left[\gamma_{\mu} \left(\partial_{\mu} + i g_{\mathsf{s}} \mathbf{A}_{\mu} \right) + \mathbf{m} \right] \psi \tag{1}$$

ψ_{f,α,c} is the quark field with flavour index *f*, Dirac index α and colour index *c*.
 A_μ = A^a_μT^a is the gluon field

Euclidean QCD Lagrangian given by

$$\mathscr{L}_{QCD} = \frac{1}{4} \operatorname{Tr} G_{\mu\nu} G_{\mu\nu} + \bar{\psi} \left[\gamma_{\mu} \left(\partial_{\mu} + i g_{s} A_{\mu} \right) + m \right] \psi$$
(1)

- $\psi_{f,\alpha,c}$ is the quark field with flavour index f, Dirac index α and colour index c.
- $A_{\mu} = A_{\mu}^{a} T^{a}$ is the gluon field
- Field strength $G_{\mu\nu} = G^a_{\mu\nu}T^a$, where

$$G^a_{\mu
u}=\partial_\mu A^a_
u-\partial_
u A^a_\mu+g_s f^{abc}A^b_\mu A^c_
u$$

Euclidean QCD Lagrangian given by

$$\mathscr{L}_{QCD} = \frac{1}{4} \operatorname{Tr} \mathbf{G}_{\mu\nu} \mathbf{G}_{\mu\nu} + \bar{\psi} \left[\gamma_{\mu} \left(\partial_{\mu} + i g_{\mathsf{s}} \mathbf{A}_{\mu} \right) + \mathbf{m} \right] \psi \tag{1}$$

- $\psi_{f,lpha,c}$ is the quark field with flavour index f, Dirac index lpha and colour index c.
- $A_{\mu} = A^{a}_{\mu}T^{a}$ is the gluon field
- Field strength $G_{\mu\nu} = G^a_{\mu\nu}T^a$, where

$$G^a_{\mu
u}=\partial_\mu A^a_
u-\partial_
u A^a_\mu+g_{
m s} f^{abc}A^b_\mu A^c_
u$$

- For $g_{\rm s} \ll 1$ can use perturbation theory (very high temperature/very short distances)
- For $g_{\rm s} \sim 1$ or non-perturbative phenomena must use non-perturbative approach

"Standard" Model Recap ○○●

CE UCD 1000 Scale Set

Action 0000

Thermodynamics 00000 *C_s²* 00000000 Conclusio

A sketch of the QCD Phase Diagram

"Standard" Model Recap	Lattice QCD	Scale Setting	Action	QC ₂ D	Thermodynamics	Conclusion
000	●00000	00	0000	000	00000	0

Want to solve the path integral

$$\langle \mathscr{O}
angle = rac{1}{Z} \int \mathscr{D}[\Phi] \mathscr{O}[\Phi] e^{-\mathsf{S}[\Phi]}$$

(2)

- Space-time itself is discretised
- 4-Dimensional Lattice with periodic boundary conditions.
- Fermions lie on vertices, gauge bosons on the links

"Standard" Model Recap 000	Lattice QCD o●oooo	Scale Setting 00	Action 0000	QC_2D	Thermodynamics 00000	Conclusion O

Gluon fields:

$A_{\mu}(x)$	\in	$\mathfrak{su}(N)$	(3)
$U_{\mu}(n)$	\in	SU(N)	(4)

Gauge Action:

$$S_{g}[A] = -\frac{1}{2g^{2}} \int d^{4}x G^{a}_{\mu\nu} G^{a}_{\mu\nu}$$
(5)
$$S_{g}[U] = -\frac{a^{4}}{2g^{2}} \sum_{n \in \Lambda} \operatorname{Tr} G_{\mu\nu}(n) G^{\mu\nu}(n)$$
(6)

This discretisation is not unique

"Standard" Model Recap 000	Lattice QCD 00●000	Scale Setting 00	Action 0000	OC_2D	Thermodynamics 00000	Conclusion O

Fermion Action:

$$S_{F}\left[\psi,\bar{\psi},A\right] = \sum_{f=1}^{N_{f}} \int d^{4}x \bar{\psi}^{(f)}(x) \left(\gamma_{\mu} \left(\partial_{\mu} + iA_{\mu}(x)\right) + m^{(f)}\right) \psi^{(f)}(x)$$
(7)

$$S_{F}[\psi,\bar{\psi},U] = a^{4} \sum_{n\in\Lambda} \sum_{f=1}^{N_{f}} \bar{\psi}^{(f)}(n) \left(\sum_{\mu=1}^{4} \gamma_{\mu} \frac{U_{\mu}(n)\psi_{\mu}^{(f)}(n+\hat{\mu}) - U_{\mu}^{\dagger}(n-\hat{\mu})\psi^{(f)}(n-\hat{\mu})}{2a} + m\psi^{(f)}(n) \right)$$
(8)

Model	

Lattice OCD

00000

- Bosonic observables represented by closed loop on the lattice (Wilson loop)
- Closed loop in temporal extent (Polyakov loop) is order parameter for deconfinement
- Simplest closed loop is a 1×1 square called a *plaquette*

 $U_{\mu\nu}(n) =$ $U_{\mu}(n)U_{\nu}(n+\hat{\mu})U_{-\mu}(n+\hat{\mu}+\hat{\nu})U_{-\nu}(n+\hat{\nu}) =$ $U_{\mu}(n)U_{\nu}(n+\hat{\mu})U_{\mu}^{\dagger}(n+\hat{\nu})U_{\nu}^{\dagger}(n) \quad (9)$

Gauge configurations produced with probability weight

$$e^{-S[U]} = \det M[U]e^{-S_g[U]}$$
 (10)

using Hybrid Monte Carlo (HMC). *M* [*U*] fermion matrix.

- Metropolis algorithm is inefficient. Updates one site per step.
- updating all sites naïvely gives very large changes to action
- HMC involves a global update in a fictitious time τ defined by *Hamiltonian* instead.

"Standard" Model Recap 000	Lattice QCD	Scale Setting 00	Action 0000	QC_2D	Thermodynamics 00000	Conclusion O
Generating Configurations						

"Standard" Model Recap 000	Lattice QCD ○○○○○●	Scale Setting 00	Action 0000	QC_2D	Thermodynamics 00000	Conclusion O
Generating Configurations						

2 Use gauge configuration U to generate conjugate momentum field P according to the Gaussian Distribution exp (- Tr P²)

- 2 Use gauge configuration U to generate conjugate momentum field P according to the Gaussian Distribution exp (- Tr P²)
- Evolve Hamiltonian using leapfrog

- 2 Use gauge configuration U to generate conjugate momentum field P according to the Gaussian Distribution exp (- Tr P²)
- Evolve Hamiltonian using leapfrog
- **4** Accept or reject the new configuration using the acceptance probability $\min(1, \exp(-\delta H))$

"Standard" Model Recap 000	Lattice QCD	Scale Setting 00	Action 0000	QC_2D	Thermodynamics 00000	Conclusion O
Generating Configurations						

- 2 Use gauge configuration U to generate conjugate momentum field P according to the Gaussian Distribution exp (- Tr P²)
- Evolve Hamiltonian using leapfrog
- Accept or reject the new configuration using the acceptance probability min (1, exp (-δH))

Fun Fact!

For an exact calculation, $\delta H = 0$ due to energy conservation so all fields would be accepted.

"Standard" Model Recap 000

tice QCD

Scale Setting

on Ç

Thermodynamics

C_5 00000000 Conclusior o

- Observables on the lattice are dimensionless, must set the scale to give a physical meaning.
- Choose an observable and use it to fix scale.
- We use string tension $\sigma = (440 \text{ MeV})^2$ and compare using static quark potential.

Ensemble	β	κ	<i>a</i> (fm)	$\frac{m_{\pi}}{m_{ ho}}$	m_{π} (MeV)
V. Coarse	1.7	0.178	0.233	0.779(4)	688(11)
Coarse	1.9	0.1680	0.178(6)	0.805(9)	717(25)
Light	1.7	0.1810	0.189(4)	0.61(5)	638(33)
Fine	2.1	0.1577	0.138(6)	0.810(7)	637(28)
Light-Fine					

Table: Table of lattice parameters, lattice spacings and pion masses

"Standard" Model Recap 000

Scale Setting

Thermodynamics

C_s² 000000000 Conclusion 0

- Observables on the lattice are dimensionless, must set the scale to give a physical meaning.
- Choose an observable and use it to fix scale.
- We use string tension $\sigma = (440 \, {\rm MeV})^2$ and compare using static quark potential.

Figure: Static Quark Potential for $\beta = 2.0$, $\kappa = 0.1642$ on a $16^3 \times 32$ lattice.

"Standard" Model Recap 000

tice QCD

Scale Setting ●0

n QC

Thermodynamics

C_s² 000000000 Conclusior o

- Observables on the lattice are dimensionless, must set the scale to give a physical meaning.
- Choose an observable and use it to fix scale.
- We use string tension $\sigma = (440 \text{ MeV})^2$ and compare using static quark potential.

Ensemble	β	κ	<i>a</i> (fm)	$\frac{m_{\pi}}{m_{ ho}}$	m_{π} (MeV)
V. Coarse	1.7	0.178	0.233	0.779(4)	688(11)
Coarse	1.9	0.1680	0.178(6)	0.805(9)	717(25)
Light	1.7	0.1810	0.189(4)	0.61(5)	638(33)
Fine	2.1	0.1577	0.138(6)	0.810(7)	637(28)
Light-Fine	2.0	0.1640	0.118(1)	0.63(2)	0.333(3)

Table: Table of lattice parameters, lattice spacings and pion masses

"Standard" Model Recap 000	Lattice QCD 000000	Scale Setting ○●	Action 0000	QC_2D	Thermodynamics 00000	Conclusion O

- **1** Produce gauge configs for chose of β and κ .
- 2 Calculate pseudoscalar/vector correlators and extract mass ratio.
- Evaluate Wilson Loops/Lines numerically
- 4 Fit Wilson lines to form

$$W(r,\tau) = Ae^{-V(r)\tau}$$
(11)

with fit parameters A and V(r)

5 Fit *V*(*r*) to the Cornell Form in lattice units

$$aV(r) = aV_0 + \frac{\alpha}{\left(\frac{r}{a}\right)} + a^2\sigma\frac{r}{a}$$
(12)

"Standard" Model Recap 000	Lattice QCD 000000	Scale Setting 00	Action ●000	QC ₂ D	Thermodynamics 00000	Conclusion o

Momentum Space Massless Free Fermion Propagator

$$\tilde{D}(p)^{-1}\Big|_{m=0} = \frac{i\sum_{\mu=1}^{4} \gamma_{\mu} p_{\mu}}{p^{2}}$$
(13)
$$\tilde{D}(p)^{-1}\Big|_{m=0} = \frac{ia^{-1}\sum_{\mu=1}^{4} \gamma_{\mu} \sin(p_{\mu}a)}{a^{-2}\sum_{\mu=1}^{4} \sin^{2}(p_{\mu}a)}$$
(14)

"Standard" Model Recap 000	Lattice QCD 000000	Scale Setting	Action 0000	QC_2D	Thermodynamics 00000	Conclusion 0

• Continuum has pole at $p = 0 \Rightarrow$ a fermion!

²Nielsen and Ninomiya 1981.

"Standard" Model Recap	Lattice QCD	Scale Setting	Action	QC ₂ D	Thermodynamics	Conclusion
000	000000	00	○●○○	000	00000	O

- Continuum has pole at $p = 0 \Rightarrow$ a fermion!
- Continuum has pole at $p_{\mu} \in \{0, \frac{\pi}{a}\} \Rightarrow 16$ fermions!

²Nielsen and Ninomiya 1981.

"Standard" Model Recap 000	Lattice QCD 000000	Scale Setting 00	Action ○●○○	QC_2D	Thermodynamics 00000	Conclusion O

- Continuum has pole at $p = 0 \Rightarrow$ a fermion!
- Continuum has pole at $p_{\mu} \in \{0, \frac{\pi}{a}\} \Rightarrow 16$ fermions!
- Who ordered those!?!

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D	Thermodynamics 00000	Conclusion 0

- Continuum has pole at $p = 0 \Rightarrow$ a fermion!
- Continuum has pole at $p_{\mu} \in \{0, \frac{\pi}{a}\} \Rightarrow$ 16 fermions!
- Who ordered those!?! This is the infamous fermion doubling problem. Techniques for removing these doublers include
 - Wilson Fermions (increase mass of doublers so they decouple from the theory)
 - (Rooted) Staggered Fermions (mixes Dirac and space-time indices)
 - Domain Wall Fermions (construct chiral fermions on a 4D interface of a 5D lattice)

"Standard" Model Recap 000	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D	Thermodynamics 00000	Conclusion 0

- Continuum has pole at $p = 0 \Rightarrow$ a fermion!
- Continuum has pole at $p_{\mu} \in \{0, \frac{\pi}{a}\} \Rightarrow 16$ fermions!
- Who ordered those!?! This is the infamous fermion doubling problem. Techniques for removing these doublers include
 - Wilson Fermions (increase mass of doublers so they decouple from the theory)
 - (Rooted) Staggered Fermions (mixes Dirac and space-time indices)
 - Domain Wall Fermions (construct chiral fermions on a 4D interface of a 5D lattice)
- Want translational invariance, hermiticity and locality; you get an equal number of left and right handed fermions. No-Go Theorem!²

"Standard" Model Recap 000	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D	Thermodynamics 00000	Conclusion o

- Continuum has pole at $p = 0 \Rightarrow$ a fermion!
- Continuum has pole at $p_{\mu} \in \{0, \frac{\pi}{a}\} \Rightarrow 16$ fermions!
- Who ordered those!?! This is the infamous fermion doubling problem. Techniques for removing these doublers include
 - Wilson Fermions (increase mass of doublers so they decouple from the theory)
 - (Rooted) Staggered Fermions (mixes Dirac and space-time indices)
 - Domain Wall Fermions (construct chiral fermions on a 4D interface of a 5D lattice)
- Want translational invariance, hermiticity and locality; you get an equal number of left and right handed fermions. No-Go Theorem!²
- This work uses Wilson Fermions, which explicitly break chiral symmetry.

²Nielsen and Ninomiya 1981.

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action ○○●○	QC_2D	Thermodynamics 00000	Conclusion O
Wilson Fermions						

• Want to distinguish between the real $p_{\mu} = 0$ pole and the $p_{\mu} = \frac{\pi}{a}$ poles

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action ○○●○	QC_2D	Thermodynamics 00000	Conclusion O
Wilson Fermions						

- Want to distinguish between the real $p_{\mu} = 0$ pole and the $p_{\mu} = \frac{\pi}{a}$ poles
- Add term to momentum space Dirac operator that is

1 0 if
$$p_{\mu} = 0$$

2 Non-zero if
$$p_{\mu} = \frac{1}{c}$$

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action ○○●○	QC_2D	Thermodynamics 00000	Conclusion O
Wilson Fermions						

Naïve Dirac operator given by

$$\tilde{D}(p) = m + \frac{i}{a} \sum_{\mu=1}^{4} \gamma_{\mu} \sin(p_{\mu}a)$$
(15)

Instead consider

$$\tilde{D}(p) = m + \frac{i}{a} \sum_{\mu=1}^{4} \gamma_{\mu} \sin(p_{\mu}a) + \frac{1}{a} \sum_{\mu=1}^{4} (1 - \cos(p_{\mu}a))$$
(16)

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action ○○●○	QC_2D	Thermodynamics 00000	Conclusion O
Wilson Fermions						

Naïve Dirac operator given by

$$\tilde{D}(p) = m + \frac{i}{a} \sum_{\mu=1}^{4} \gamma_{\mu} \sin(p_{\mu}a)$$
(15)

Instead consider

$$\tilde{D}(p) = m + \frac{i}{a} \sum_{\mu=1}^{4} \gamma_{\mu} \sin(p_{\mu}a) + \frac{1}{a} \sum_{\mu=1}^{4} (1 - \cos(p_{\mu}a))$$
(16)

• For $p_{\mu} = rac{\pi}{a}$, we get an additional "mass" of $rac{2(d-1)}{a}$

"Standard" Model Recap 000	Lattice QCD 000000	Scale Setting 00	Action ○○●○	QC_2D	Thermodynamics 00000	Conclusion O
Wilson Fermions						

Naïve Dirac operator given by

$$\tilde{D}(p) = m + \frac{i}{a} \sum_{\mu=1}^{4} \gamma_{\mu} \sin(p_{\mu}a)$$
(15)

Instead consider

$$\tilde{D}(p) = m + \frac{i}{a} \sum_{\mu=1}^{4} \gamma_{\mu} \sin(p_{\mu}a) + \frac{1}{a} \sum_{\mu=1}^{4} (1 - \cos(p_{\mu}a))$$
(16)

- For $p_{\mu} = \frac{\pi}{a}$, we get an additional "mass" of $\frac{2(d-1)}{a}$
- In $a \rightarrow 0$ limit these extra masses are infinite so decouple
- Chiral symmetry is *explicitly* broken by the Wilson term
- Get order $\mathscr{O}(a)$ discretisation errors

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action ○○○●	QC_2D	Thermodynamics 00000	Conclusion O
Wilson Fermions						

- But we can do better!!!
- Let

$$Q_{\mu\nu} = U_{\mu,\nu}(n) + U_{\mu,-\nu}(n) + U_{-\mu,-\nu}(n) + U_{-\mu,\nu}(n)$$
(17)

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action ○○○●	QC_2D	Thermodynamics 00000	Conclusion O
Wilson Fermions						

- But we can do better!!!
- Let

$$Q_{\mu\nu} = U_{\mu,\nu}(n) + U_{\mu,-\nu}(n) + U_{-\mu,-\nu}(n) + U_{-\mu,\nu}(n)$$
(17)

• Then the Symanzik Improved action of the form

$$S_{I} = S_{\text{Wilson}} + c_{\text{sw}} a^{5} \sum_{n \in \Lambda} \sum_{\mu < \nu} \psi(\bar{n}) \frac{1}{2} \sigma_{\mu\nu} \left(\frac{i}{8a^{2}} \left(Q_{\mu\nu}(n) - Q_{\nu\mu}(n) \right) \right) \psi(n) \quad (18)$$

has discritisation errors of $\mathscr{O}(a^2)$

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action ○○○●	QC_2D	Thermodynamics 00000	Conclusion O
Wilson Fermions						

- But we can do better!!!
- Let

$$Q_{\mu\nu} = U_{\mu,\nu}(n) + U_{\mu,-\nu}(n) + U_{-\mu,-\nu}(n) + U_{-\mu,\nu}(n)$$
(17)

• Then the Symanzik Improved action of the form

$$S_{I} = S_{\text{Wilson}} + c_{\text{sw}} a^{5} \sum_{n \in \Lambda} \sum_{\mu < \nu} \psi(\bar{n}) \frac{1}{2} \sigma_{\mu\nu} \left(\frac{i}{8a^{2}} \left(Q_{\mu\nu}(n) - Q_{\nu\mu}(n) \right) \right) \psi(n) \quad (18)$$

has discritisation errors of $\mathscr{O}(a^2)$

This is a work in progress

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	QC2D ●00	Thermodynamics 00000	Conclusion O
Justifying my Existence						

- Want to study QCD at non-zero density (RHIC, Neutron Stars etc.)
- Add chemical potential $\mu \in \mathbb{R}$ to action?

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	QC2D ●00	Thermodynamics 00000	Conclusion O
Justifying my Existence						

- Want to study QCD at non-zero density (RHIC, Neutron Stars etc.)
- Add chemical potential $\mu \in \mathbb{R}$ to action? Then

 $e^{-S[U]} = \det M[U]e^{-S_g[U]} \in \mathbb{C}$

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	QC2D ●00	Thermodynamics 00000	Conclusion O
Justifying my Existence						

- Want to study QCD at non-zero density (RHIC, Neutron Stars etc.)
- Add chemical potential $\mu \in \mathbb{R}$ to action? Then

 $e^{-S[U]} = \det M[U]e^{-S_g[U]} \in \mathbb{C}$

Complex probability density...

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	QC₂D ●oo	Thermodynamics 00000	Conclusion O
Justifying my Existence						

- Want to study QCD at non-zero density (RHIC, Neutron Stars etc.)
- Add chemical potential $\mu \in \mathbb{R}$ to action? Then

$$e^{-S[U]} = \det M[U]e^{-S_g[U]} \in \mathbb{C}$$

- Complex probability density...
- Solutions?
 - Use $\theta = i\mu$ instead
 - Complex Langevin
 - Lefschetz thimbles
 - Taylor expand in μ around $\mu = 0$

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	QC2D ●00	Thermodynamics 00000	Conclusion O
Justifying my Existence						

- Want to study QCD at non-zero density (RHIC, Neutron Stars etc.)
- Add chemical potential $\mu \in \mathbb{R}$ to action? Then

$$e^{-S[U]} = \det M[U]e^{-S_g[U]} \in \mathbb{C}$$

- Complex probability density...
- Solutions?
 - Use $\theta = i\mu$ instead
 - Complex Langevin
 - Lefschetz thimbles
 - Taylor expand in μ around $\mu = 0$
 - Cheat?

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D $\circ \bullet \circ$	Thermodynamics 00000	Conclusion O
Justifying my Existence						
QC_2D						

• Use SU(2) instead of SU(3)?

"Standard" Model Recap 000	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D $\circ \bullet \circ$	Thermodynamics 00000	Conclusion O
Justifying my Existence						
QC_2D						

- Use SU(2) instead of SU(3)?
- Then for N_f even

 $\det M[U]e^{-S_g[U]} \in \mathbb{R}_0^+$

so can use HMC

"Standard" Model Recap 000	Lattice QCD 000000	Scale Setting 00	Action 0000	QC ₂ D ŏ●o	Thermodynamics 00000	Conclusion O
Justifying my Existence						
QC_2D						

- Use SU(2) instead of SU(3)?
- Then for N_f even

 $\det M[U]e^{-S_g[U]} \in \mathbb{R}_0^+$

so can use HMC

 Theory is *qualitatively similar* showing QCD properties such as deconfinement and chiral symmetry breaking.

"Standard" Model Recap 000	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D $\circ \bullet \circ$	Thermodynamics 00000	Conclusion O
Justifying my Existence						
QC_2D						

DISCLAIMER!!!!

We are NOT claiming that the strong force actually follows SU(2) instead of SU(3).
 We are merely using SU(2) to probe an otherwise inaccessible régime using

lattice techniques, much like running 2-d instead of 3-d simulations.

• The individual quarks are still fermionic.

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	QC2D 00●	Thermodynamics 00000	Conclusion O
Justifying my Existence						

Things to keep in mind

• Lattice coupling $\beta = \frac{2N_c}{g^2}$ will have smaller value than seen in real QCD.

³This makes people *really* uncomfortable

"Standard" Model Recap	Lattice QCD	Scale Setting	Action	QC2D	Thermodynamics	Conclusion
000	000000	00	0000	oo●	00000	O
Justifying my Existence						

Things to keep in mind

- Lattice coupling $\beta = \frac{2N_c}{\sigma^2}$ will have smaller value than seen in real QCD.
- Max 10 flavours to have asymptotic freedom (vs up-to 16 in three-colour QCD)

³This makes people *really* uncomfortable

"Standard" Model Recap 000	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D	Thermodynamics 00000	Conclusion 0
Justifying my Existence						

Things to keep in mind

- Lattice coupling $\beta = \frac{2N_c}{g^2}$ will have smaller value than seen in real QCD.
- Max 10 flavours to have asymptotic freedom (vs up-to 16 in three-colour QCD)
- Baryons are now quark-quark pairs (diquarks), so follow Bose-Einstein Statistics³
- BEC phase appears at high density
- Now get 5 massless Goldstone bosons in the chiral limit.

³This makes people *really* uncomfortable

"Standard" Model Recap 000	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D	Thermodynamics ●0000	Conclusion O

- These results were first presented at XQCD 2022 and XV QCHS Conference⁴
- Using a spatial extent $N_s = 24$
- Conducted a temperature scan on coarse lattice at $a\mu = 0.400$
- Temperature is given by

$$T = \frac{1}{a_{\tau} N_{\tau}} \tag{19}$$

 Varying the number of sites along the time direction allows us to complete a temperature scan

OCD So

Scale Sett

Action 0000 C₂D

Thermodynamics

00000000

Conclusior o

Phase diagram of QC₂D for $\frac{m_{\pi}}{m_{\rho}} = 0.80(1)$.

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	QC ₂ D 000	Thermodynamics ○○●○○	Conclusion O
Superfluid Transition						

- Molecular dynamics requires inverting a large sparse matrix via conjugate gradient. ^α
- At non-zero baryon density, fermion matrix acquires non-zero density of very small eigenvalues, slowing down the computation
- Diquark source *j* lifts these eigenvalues, with "physical" results recovered by extrapolation of *j* to zero.

Diquark condensate vs Diquark Source

^{*a*}i.e. make supercomputer go brrr

"Standard" Model Recap	Lattice QCD	Scale Setting	Action	QC_2D	Thermodynamics
000	000000	00	0000		○○○●○

C₅ 00000000 Conclusior 0

Superfluid Transition

- The superfluid phase transition occurs around T ~ 100 MeV.
- This indicates that the superfluid phase transition is indeed distinct from the deconfinement crossover.

Diquark condensate vs Temperature

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D	Thermodynamics ○○○○●	Coi o
Bosonic Observables						

Renormalised Polyakov loop with two renormalisation schemes. These results are also compatible with earlier results on smaller volumes.

A: $L_R(N_\tau = 4, \mu = 0) = 0.5$ B: $L_R(N_\tau = 4, \mu = 0) = 1.0$

Unrenormalised but subtracted chiral condensate

The change in behaviour from constant to decreasing at $T \sim 150$ MeV suggests that the crossover coincides with the deconfinement crossover, not the superfluid transition.

)CD Sca

ale Setting

n Ç

Thermodynan 00000 C_s^2

Conclusio

Neutron Star (NS)

- Equation of State (EoS) of dense nuclear matter an unanswered question
- NS form natural labs for exploring dense nuclear matter
- Measurements of NS tidal deformabilities using Gravitational Wave (GW) indicates EoS soft at nuclear densities.
- Pulsar observations indicate stiff EoS at $M > 2M_{\odot}$. Non-monotonic C_s ?

	CEFT	Dense NM	Pert. QM	CFTs
$c_{\rm s}^2$	$\ll 1$	[0.8, 1]	$\lesssim 1/3$	1/3

Table: C_s^2 predictions in four different limits.^{*a*}

^aAnnala et al. 2023.

Table: Radius constraints for neutron stars for $\simeq 1.4 M_{\odot}$ and $\simeq 2.1 M_{\odot}$ NSs. taken from Minamikawa et al. 2023

	radius [km]	mass [M_{\odot}]
GW170817 (primary)	$11.9^{+1.4}_{-1.4}$	$1.46^{+0.12}_{-0.10}$
GW170817 (second)	$11.9^{+1.4}_{-1.4}$	$1.27\substack{+0.09\\-0.09}$
J0030+0451 (NICER)	$13.02^{+1.24}_{-1.06}$	$1.44_{-0.14}^{+0.15}$
J0030+0451 (NICER)	$12.71^{+1.14}_{-1.19}$	$1.34_{-0.16}^{+0.15}$
PSR J0740+6620 (NICER)	$12.35_{-0.75}^{+0.75}$	$2.08_{-0.07}^{+0.07}$
PSR J0740+6620 (NICER)	$12.39_{-0.98}^{+1.30}$	$2.08_{-0.07}^{+0.07}$

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	QC2D 000	Thermodynamics 00000	C_s^2	Conclusion 0

- Recent results (Kojo and Suenaga 2022) indicate QC₂D is applicable NS studies.
- First principles calculation of C_s^2 using QC₂D
- Coarse lattice parameters. $12^3 \times 24 \Rightarrow T \approx 50 \text{ MeV}$
- Work in progress. No diquark extrapolation

"Standard" Model Recap	Lattice QCD	Scale Setting	Action	QC ₂ D	Thermodynamics	C_s^2	Conclusion
000	000000	oo	0000	000	00000		O
Pressure							

 $C_{s}^{2}=rac{dP}{darepsilon}$

"Standard" Model Recap ୦୦୦	Lattice QCD 000000	Scale Setting oo	Action 0000	QC_2D	Thermodynamics 00000	C_s^2	Conclusion O
Pressure							

$$C_{\rm s}^2 = rac{dP}{darepsilon}$$
 (20)

• Energy Density ε has fermionic and baryonic component

$$\varepsilon_{g} = \frac{3\beta}{N_{c}} \operatorname{Re} \left(\operatorname{Tr} U_{ij} - \operatorname{Tr} U_{i0} \right)$$
(21)
$$\varepsilon_{q} = \kappa \left\langle \bar{\psi} D_{0} \psi \right\rangle$$
(22)

"Standard" Model Recap	Lattice QCD	Scale Setting	Action	QC2D	Thermodynamics	C_s^2	Conclusion
୦୦୦	000000	oo	0000	000	00000		O
Pressure							

$$C_s^2 = \frac{dP}{d\varepsilon}$$
 (20)

• Energy Density ε has fermionic and baryonic component

$$\varepsilon_{g} = \frac{3\beta}{N_{c}} \operatorname{Re} \left(\operatorname{Tr} U_{ij} - \operatorname{Tr} U_{i0} \right)$$
(21)
$$\varepsilon_{q} = \kappa \left\langle \bar{\psi} D_{0} \psi \right\rangle$$
(22)

Two different approaches for pressure

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D	Thermodynamics 00000	C_s^2	Conclusion O
Pressure							

Integral Method

$${\it P}(\mu)=\int\limits_{0}^{\mu}n_{q}(\mu')d\mu'$$

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	Thermodynamics 00000	C_s^2	Conclusion O
Pressure						

Integral Method

$${\it P}(\mu)=\int\limits_{0}^{\mu}n_{q}(\mu')d\mu$$

(23)

- $n_q(\mu)$ has form of cubic polynomial
- Fit $n_q(\mu)$, extract coefficients and integrate analytically.
- Currently use polynomial interpolation, cubic spline on the cards.

"Standard" Model Recap ୦୦୦	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D	Thermodynamics 00000	C_s^2	Conclusion O
Pressure							

Integral Method

Figure: Quark and Energy Number Densities

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D	Thermodynamics 00000	C_s^2	Conclusion O
Τ							

Conformal Anomaly

$$T_{\mu\mu} = \varepsilon - 3\rho \tag{23}$$

"Standard" Model Recap 000	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D	Thermodynamics 00000	C_s^2	Conclusion O
$T_{\mu\mu}$							

Conformal Anomaly

$$T_{\mu\mu} = \varepsilon - 3p$$
 (23)

• Can find P from conformal anomaly

"Standard" Model Recap 000	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D	Thermodynamics 00000	C_s^2	Conclusion O
Τ,,,,							

Conformal Anomaly

$$T_{\mu\mu} = \varepsilon - 3p \tag{23}$$

Can find P from conformal anomaly

• Calculate gluonic and fermionic components separately.

$$T^{g}_{\mu\mu} = -\frac{3a}{N_{c}}\frac{\partial\beta}{\partial a}\operatorname{Re}\left(\operatorname{Tr}U_{ij} + \operatorname{Tr}U_{i0}\right)$$
(24)
$$T^{q}_{\mu\mu} = -a\frac{\partial\kappa}{\partial a}\kappa^{-1}\left(4N_{f}N_{c} - \langle\bar{\psi}\psi\rangle\right)$$
(25)

"Standard" Model Recap	Lattice QCD 000000	Scale Setting 00	Action 0000	QC_2D	Thermodynamics 00000	C_s^2	Conclusion O
Τ.,,,							

Conformal Anomaly

$$T_{\mu\mu} = \varepsilon - 3p$$
 (23)

Can find P from conformal anomaly

• Calculate gluonic and fermionic components separately.

$$\Gamma^{g}_{\mu\mu} = -\frac{3a}{N_{c}}\frac{\partial\beta}{\partial a}\operatorname{Re}\left(\operatorname{Tr}U_{ij} + \operatorname{Tr}U_{i0}\right) \quad (24)$$

$$\Gamma^{q}_{\mu\mu} = -a\frac{\partial\kappa}{\partial a}\kappa^{-1}\left(4N_{f}N_{c} - \langle\bar{\psi}\psi\rangle\right) \quad (25)$$

- Needs fewer configurations
- Karsch Coefficients need different lattice spacings.

tice QCD 0000 Scale Settir 00 Action

C₂D 00 Thermodynamics 00000 C_s^2

Conclusion

$T_{\mu\mu}$

Figure: Unrenormalised Conformal Anomaly evaluated using the derivative and integral method, with the gluonic and fermionic components shown for the derivative method.

Figure: Renormalised Conformal Anomaly

Lattice QCD 000000 Scale Sett

Action 0000 QC₂D 000 Thermodynamics

 C_s^2

Conclusion

Figure: Speed of sound squared calculated using derivative and integral methods. Calculated using a $12^3 \times 24$ coarse lattice. Results are consistent with Iida and Itou 2022

QCD So

le Setting

on oo Thermodynami 00000 C₅ 00000000 Conclusion

Summary and bucket list

- The superfluid phase transition and deconfinement crossover are distinct
- Speed of sound exceeds the conformal limit. EoS stiff at intermediate densities?
"Standard" Model Recap 000

ale Setting > ion oo QC₂D

Thermodynamic 00000 C² 0000000 Conclusion

Summary and bucket list

- The superfluid phase transition and deconfinement crossover are distinct
- Speed of sound exceeds the conformal limit. EoS stiff at intermediate densities?
- Work underway to implement a Symanzik improved fermion action
- QC₂D phase diagram for light-fine configuration also on the agenda

"Standard" Model Recap 000

QCD Sc

le Setting

on QC_2D

Thermodynar 00000 C_s²

Conclusion

Summary and bucket list

- The superfluid phase transition and deconfinement crossover are distinct
- Speed of sound exceeds the conformal limit. EoS stiff at intermediate densities?
- Work underway to implement a Symanzik improved fermion action
- QC₂D phase diagram for light-fine configuration also on the agenda
- Get the code to actually run correctly on GPUs
- EuroHPC benchmark access just awarded (LUMI-C/Vera).

- The authors wish to acknowledge the Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support.
- This work was performed using the DiRAC Data Intensive service at Leicester, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility (www.dirac.ac.uk). The equipment was funded by BEIS capital funding via STFC capital grant ST/K000373/1 and ST/R002363/1 and STFC DiRAC Operations grant ST/R001014/1. DiRAC is part of the National e-Infrastructure.

- Annala, Eemeli et al. (Mar. 2023). "Strongly interacting matter exhibits deconfined behavior in massive neutron stars". In: arXiv: 2303.11356 [astro-ph.HE].
- Iida, Kei and Etsuko Itou (July 2022). "Velocity of Sound beyond the High-Density Relativistic Limit from Lattice Simulation of Dense Two-Color QCD". In: arXiv: 2207.01253 [hep-ph].
- Kojo, Toru and Daiki Suenaga (2022). "Peaks of sound velocity in two color dense QCD: Quark saturation effects and semishort range correlations". In: *Phys. Rev. D* 105.7, p. 076001. DOI: 10.1103/PhysRevD.105.076001. arXiv: 2110.02100 [hep-ph].
- Lawlor, Dale et al. (2022). "Thermal Transitions in Dense Two-Colour QCD". In: vol. 274, p. 07012. DOI: 10.1051/epjconf/202227407012. arXiv: 2210.07731 [hep-lat].

Minamikawa, Takuya et al. (2023). "Chiral Restoration of Nucleons in Neutron Star Matter: Studies Based on a Parity Doublet Model". In: Symmetry 15.3, p. 745. DOI: 10.3390/sym15030745. arXiv: 2302.00825 [nucl-th].
Nielsen, Holger Bech and M. Ninomiya (1981). "Absence of Neutrinos on a Lattice. 1. Proof by Homotopy Theory". In: Nucl. Phys. B 185. Ed. by J. Julve and M. Ramón-Medrano. [Erratum: Nucl.Phys.B 195, 541 (1982)], p. 20. DOI: 10.1016/0550-3213 (82) 90011-6.

QC₂D Two Colour QCD QCD Quantum Chromodynamics HMC Hybrid Monte Carlo RHIC Relativistic Heavy Ion Collisions EoS Equation of State NS Neutron Star GW Gravitational Wave