

Cryogenic architecture and heat loads for the High-Luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN

V. Gahier on behalf of HL-LHC Cryogenics team ICEC29/ICMC24

Geneva, 23/07/2024

Outline

1. Global scope overview and HL-LHC cryogenic architecture

- 2. Methodology for heat load definition
- 3. Heat Load Summary
	- Machine components
	- Cryogenic distribution
- 4. Required helium refrigerators cooling capacity
- 5. Conclusions and way forward

Global scope overview

- **HL-LHC goal** : producing in that period 10 times more data as compared to the nominal LHC operation period.
- **EXECUTE: Requires** an upgrade of the final focusing components both for **machine lifetime** and **performance** by increasing the peak luminosity by a minimum of five times wrt LHC nominal.
- **New superconducting elements** having increased cryogenic demand requires the installation of new Refrigerator and Infrastructure in IP1 and IP5.

Machine components

DFм

Cold Mass

temperature

 $-4.5K$

 \Box 1.9 K

DCM

Super Conducting

Gaseous

D1 СP

Simplified connection

DFx

tn DFHX

Q2b

Others

Q3

V.Gahier | ICEC29/ICMC2024

Beam Screen

Cold Mass Thermal Shield

Thermal Shield

 \sim 60-80 K

temperature

CC.

Beam Screen

temperature

 \Box 60-80 K

 $-4.5 - 20 K$

3

HL-LHC P1/P5 Cryogenic architecture

V.Gahier | ICEC29/ICMC2024

Heat load classification and mechanisms

Static

➢Depends on cryostat design and insulation vacuum ➢Constant at nominal conditions

Resistive

➢Resistive heating occurs in splices of the superconducting cables and in current leads.

Beam Induced

➢Image current depend on beam characteristics ➢Electron cloud considering Carbon coating

Collision Induced

- ➢Secondary particle losses
- ➢Mainly depend on luminosity and beam energy

Magnetic Induced

- ➢Dissipation of Eddy currents due to change of magnetic field
- ➢Occurs at ramp up and ramps down

Methodology at Machine component level

- **Design cooling capacity** Q_{design} is calculated for each temperature level and machine component considering an uncertainty factor *Fun* applied only on the static heat loads and an overcapacity factor **Fov at 1.5** applied only on the Nominal conditions (7 TeV and 5L0).
- **Estimation of the static heat load** consider the characteristic of each individual components and design maturity.
- **EXTE:** The **installed local capacity** is the maximum heat load which can be extracted from any cooling circuit limited by the systems design. It should be at least as high as the design capacity.

6

Machine Component Heat Load Summary

Equivalent 4.5 K eq. repartition

- Machine component led by the heat load at 1.9 K on the Inner Triplet.
- **More specifically, heat load on the IT is led by the Collision heat Induced** heat load.

Illustration of heat loads for one IT @ 1.9 K

➢ **Dynamic** heat loads account for **~ 75%**

➢ **Installed local cooling** capacity is determined by the gas velocity in the magnet heat exchangers in the Inner triplet depending on **cold mass temperature.**

8

Design heat loads on the Cryogenic distribution system

- The cryogenic distribution system includes :
	- **Five process pipes** in a single vacuum envelope, thermally shielded by an actively cooled thermal shield.
	- **Service modules** including valves and sub-cooling heat exchangers to connect the insertion elements.
	- **Return modules**, located close to the interaction point (IP), including valves, heaters, and a phase separator.
	- **Junction modules**, located at the junction to the LHC distribution (QRL), including valves, heaters and a phase separator.

Towards Refrigerator design : consideration on 1.9/2.0 K level

- **Heat load to 1.9K / 2.0 K level** at the component level represents more than **70% of the charge** coming mostly from dynamic load.
- **Dynamic heat loads** are well controlled based on a **return of experience** from LHC machine and **model benchmark**.

- To avoid non-necessary overdesign for the refrigerator and allow for more energy efficient turn-down operation, the design capacity was chosen at **2720 W @1.9/2.0 K (Fov at 1.3)** for the refrigerator allowing :
- i...............● To cover the heat loads at ultimate luminosity of 7.5 L0 at 7 TeV.
	- To cover the heat loads at maximum beam energy of 7.5 TeV and a luminosity of 6.5xL0.
	- To quarantee an overall overcapacity factor of 1.3 for the nominal luminosity at 7 TeV.
- At the machine component level, all cryogenic elements were designed for at least 3116 W.
- At maximum, the cold compressor are designed to **3210 W** to absorb excess heat deposited on the cold mass when collision occur.

Refrigerator cooling capacity

- ➢ Summarizing all the previous data, each P1 and P5 Refrigerators shall be designed for **14 kW at 4.5 K eq.**
- \triangleright Three operating cases were considered for the Refrigerator design :
	- The **Maximum Capacity mode**, corresponding to the moment when collision occurs. This mode last one hour during each fill with a supplementary charge being compensated by buffered liquid helium in the Refrigerator;
	- The **Design Capacity mode**, covering a steady state operating mode when the design heat load is extracted at the HL-LHC machine component level.
	- The **Turndown mode**, characterized by minimum helium cooling before beam injection and after beam dump.

Conclusion

- The **HL-LHC heat loads** were assessed taking into account beam parameters, luminosity, and beam energy as well as the maturity of design of the machine components considering overcapacity contingencies.
- The **installed cryogenic capacity** was found adequate for each machine component, with sufficient local margins.
- The Refrigerator capacity was defined for an equivalent capacity of **14 kW@4.5 K, including 3.25 kW@1.9 K**, based on the machine components and cryogenic distribution heat loads with a limited overcapacity.
- **The contracts of the two new cryogenic plants and associated cryogenic** distribution lines required for the HL-LHC upgrade are currently **under manufacturing phase** \rightarrow The next phases to come will be the installation, commissioning and tests, and handover to operation.
- In the same while, the machine components are currently tested at CERN with **thermal measurements as per expectation**.

Installation of gaseous storage tank

PFHE test at Linde premises

Thanks for your time and questions

V.Gahier | ICEC29/ICMC2024

Static heat loads on Inner Triplet

 Q_{static} heat load

Approach for each Temperature level \oplus **CC** D₂ Interlink **PD** $\overline{0}3$ $\overline{0}2h$ \Box 02a \Box CLIQ
1.36 W to Cold Mass Radiation to Thermal Shield 0.26 W/m2 to Ther CLIQ
1.36 W to Cold Mass IFS
0.9 W to Cold Mass $K-$ mod
2.4 W to Cold Mass 0.2 W/m2 to Cold Mass **Red 19** lignment ports (for 12 units) 1.39 W to Cold Mass Beam Screen to Cold Mass
3.04 W to Cold Mass K-mod **Type** K-mod **Function** Used for modulating of the quadrupole gradients. •Documentation **Number of items** 2 (4 feeders, 2 per K-mod) CONTACT **Name(s)** J. Liberadzka / T. Koettig **Department** Be-BI-ML **Latest Reference** HL-LHC K-mod current feeders Cryolab thermal performance test •Edms **EDMS** 2279955 **Version** 3 **Date** 05/12/2019 PROPERTIES SCHEMATIC **Property Value Unit** •Indico Conducter cross section 10 mm^2 Number of wires 2 - Length of conductor 2 ^m 300 K •Review **Temperatures** 1.9 Operating temperature 1.9 K Warm 300 K Intercept - K •Communication *No intercept implemented* **Powering** Current 25 A HEAT LOAD components LAYOUT **Data Value Unit Items edms 2279202** Conduction to 1.9 K 1.2 W 4.1 M Resistive load at 1.9 K 0.1 W 4 01A
01A
01B
02A
02B
03A
03A $\begin{array}{c} \mathsf{K}\text{-}\operatorname{\textsf{mod}}\\ \mathsf{GLI0}\\ \mathsf{GLI0}\\ \mathsf{GLI1}\\ \mathsf{GLI1}\\ \mathsf{GLI0}\\ \mathsf{GLI1}\\ \mathsf{GLI1}\\ \mathsf{GLI1}\\ \mathsf{GLI2}\\ \mathsf{GLI2}\\ \mathsf{GLI2}\\ \mathsf{GLI2}\\ \end{array}$ LHCGGXF_DG0073
LHCGGXF_DG0044
LHCGGXF_DG0044
LHCGGXF_DG0044 Heat Load Data per Unit **Heat load 1.9 K Value Unit Data type Comment** Static 1.2 W Measurement Per K-mod Resistive 0.1 W Measurement Per K-mod **Heat Load Applicable** Static yes Resistive yes **Total** 1.3 W Measurement Per K-mod Magnetic - Beam Induced - Collision Induced -

 \triangleright Uncertainty factor (F_{un}) was tailored made for each users according to the uncertainty /room to growth left for each component taking into account recommendation from heat load review panel.

 \triangleright This table does **not** include the overcapacity factor (F_{ov}) that is still to be included in design heat load

Dynamic heat loads on Inner Triplet

Heat Loads on D2

The following graphs summarise the heat loads on the cryogenic circuits of the D2, including the uncertainty and overcapacity margins which have been applied:

Heat loads on Cold powering systems

-LHC PROJEC

- ➢ Cold Powering for **IT** is designed for **current lead requirement,**
- ➢ Cold Powering for **MS** is designed for **SC link requirement,**
- ➢ Refrigerator to be designed for **23.0 g/s.**

Heat load on Crab Cavities

9.00 9.00 9.00 $\frac{1}{2.25}$ 2.25 $\frac{1}{2.25}$ $\frac{1}{2.$ $\frac{1}{5.63}$ $\frac{1}{4}$ $\frac{1}{5.63}$ 2.30 2.30 4.60 4.60 4.60 **Design Heat Load at 4.5-20 K** 23.8 W 23.8 W 15.9 W

> **Nominal + margin (4.1 MV)**

** Static overcapacity not applied to the 4.1 MV case as already included on RF side for nominal 3.4 MV case*

*** No overcapacity applied to ultimate case*

DQW prototype (length = 3 m) RFD prototype (length = 3.36 m)

Nominal (3.4 MV)

Considerations:

Ultimate (5MV)

- 3.4 MV nominal operation
- 4.1 MV design operation
- 5 MV exceptional operation