ICEC/ICMC

29th International Cryogenic Engineering Conference International Cryogenic Materials Conference 2024 July 22-26, 2024, Geneva, Switzerland

Qualification of the first MgB₂ and REBCO based Cold Powering System for HL-LHC A. Ballarino

A. Ballarino, Y. Leclercq, C. Barth, G. Willering, P. Cruikshank, V. Gahier, F. Pasdeloup, W. Bailey*, Y. Yang*

CERN, *University of Southampton

The HL-LHC Project

The main objective of HiLumi LHC Design Study is to extend the LHC lifetime by **another decade** and to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

A peak luminosity of $L_{peak} = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ with levelling, allowing:

An integrated luminosity of **250 fb⁻¹ per year**, enabling the goal of L_{int} = **3000 fb⁻¹** twelve years after the upgrade. This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.

Powering the HL-LHC magnets

Cold Powering System for HL-LHC Magnets

Itot up to 117 kA DC mHe by design ≤ 5.5 g/s mHe controlled by TREBCO

Magnets

1.9 K

He mass flow rate imposed by the cooling of the current leads

SC Link: transfer line for the helium gas needed for the cooling of the current leads \rightarrow Low heat load cryostat

The Superconducting Link for HL-LHC

| 117 | kA @ 25 K Ф ~ 90 mm, ~ 25 kg/m

MgB₂ wire produced at ASG Superconductors Superconducting Link cryostat produced at Cryoworld MgB₂ cabling performed at ICAS/TRATOS

Cold Powering System in the SM-18

Cold Powering System in the SM-18

Instrumentation signals: 304 voltage taps and 105 temperature sensors

Vertical Path of Superconducting Link

Cool-down

After the **pressure test** (4.6 bara) and the **leak test** (helium leak rate better than $1.0 \times 10-8$ mbar·l·s⁻¹), **cool-down** to nominal cryogenic conditions was performed

Dealing with Thermal Contractions

Two thermal cycles (from room temperature to cryogenic conditions) **followed by powering** of all circuits. Repetitive performance

Powering Scheme

Maximum current delivered by the power converters: 94 kA

Cryogenic and Electrical Performance

Mass flow rate dominated by requirement of optimized current leads: $\sim 0.05 \text{ g/(s·kA)}$

Cryogenic and Electrical Performance

Time (h:min:s)

High voltage tests (2.3 kV among polarities and between each polarity and the ground) in nominal cryogenic conditions **successfully performed** (leakage currents < 10 μ A)

Splices

REBCO to MgB₂, GHe @ 20 K MgB₂ to Nb-Ti, LHe @ 4.5 K Nb-Ti to Nb-Ti, LHe @ 4.5 K

Circuit	REBCO to MgB ₂ splices		MgB ₂ to Nb-Ti splices		Nb-Ti to Nb-Ti splices	
	R _{splice} measured	R _{splice} expected	R _{splice} measured	R _{splice} expected	R _{splice} measured	R _{splice} expected
18 kA	1.4 ± 0.1 nΩ	1.5 - 2.2 nΩ	1.4 ± 0.1 nΩ	≤ 1.8 nΩ	0.9 ± 0.1 nΩ	≤ 2.0 nΩ
15 kA	1.7 ± 0.1 nΩ		1.4 ± 0.3 nΩ		0.9 ± 0.1 nΩ	
2 kA - Trim	4.3 ± 0.8 nΩ	4.5 - 6.5 nΩ	1.4 ± 0.2 nΩ	≤ 3.5 nΩ	1.2 ± 0.1 nΩ	
2 kA - Correctors	10.1 ± 1.1 nΩ	9.0 - 13.0 nΩ	2.4 ± 1.4 nΩ	≤ 6.0 nΩ	1.1 ± 0.3 nΩ	
	I					

Stable performance, no overheating, temperature of splices independent of current (± 1 K)

Transient Behavior

Successfully validated:

• Cryogenic requirement

Capability of operating without liquid helium supply during 10 minutes with MgB_2 to Nb-Ti splices immersed in liquid helium

• Electrical requirement

Absence of cross talk among circuits – via electro-magnetic coupling. Fast discharges (up to 100 A/s) of the 2 kA circuits do not trigger the quench protection system of any of the other circuits

Conclusions

- The first Cold Powering System for the HL-LHC Triplets has been successfully validated: cryogenic, electrical and mechanical performance all met design parameters. Robustness of system in different operating modes was proven
- The system transferred up to |94| kA (maximum current delivered by power converters) in DC mode and in nominal cryogenic conditions: MgB₂ @ 20 K and REBCO @ 60 K. Operation of MgB₂ is up to 29 K and of REBCO up to 70 K (~ 10 K temperature margin)
- About 1500 km of MgB₂ wire has been procured for HL-LHC, and 20 km of REBCO tape is being procured
- After an intense R&D at CERN, components of the Cold Powering Systems have been industrialized. It is today in an advanced phase of series production. Installation in the LHC underground is planned to start in Q2 2027 – with completion by end 2027

Thanks for your attention !

Acknowledgements:

O. Pirotte, R. Mauny and J. Gery from the CRG group W. Maan from the VSC group P. Moyret and L. Deparis from the CERN Main Workshop

Layout of DFX

