100 K Performance of a Modified Collins Cycle Cryocooler for In-space Applications

In this talk:

- 1. Modified Collins Cycle & Floating Piston Innovation
- 2. Projected Cycle Efficiency & Prior Effort Challenges
- 3. Expander Construction Materials & Enabling Technologies
- 4. Experimental Results & Control System Performance

C D Bunge¹, A Siahvashi¹, B Krass², C L Hannon², and J G Brisson¹

 $^1\mathrm{Cryogenic}$ Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA $02139\,\mathrm{USA}$

²Triton Systems, Inc.

Modified Collins Cycle & Floating Piston Innovation

Demonstrated operation reported at 2023 CEC-ICMC

Projected Cycle Efficiency & Prior Effort Challenges

2nd law efficiency projection: 20-25% [1] ...

Prior efforts:

• Hannon demonstrated 10 K cycle operation (with precooling @ 30 K) [2]

Identified improvement areas:

- Mechanical reliability
- Real-time control hardware
- Reservoir pressure stabilization

→ Projected efficiency: ~2.5x mean Strobridge efficiency curve

[1] M. Segado, Masters Thesis, MIT "Analysis and Mitigation of Key Losses in a Multi-Stage 25–100 K Cryocooler", 2014.

[2] C. Hannon et al., "Development of a 4K-10K Collins-type cryocooler for space", 2005.

New Floating Piston for High Reliability

- First time demonstration of vacuum-insulated lightweight piston
 - Hollow graphite-epoxy composite with Invar coating (helium barrier)
 - Previous work with G10 piston had reliability issues
- Lightweight piston eliminates warm end seal and minimizes blowby
- CTE matched piston-cylinder to avoid jamming
- Composite material system minimizes heat leak due to large axial temperature gradient (300 K to 90 K)

Piston-cylinder gap

75 microns

Result: High reliability (in-space applications)

Enabling Technologies

- Laser triangulation piston tracking input
 - ± 60-micron accuracy to minimize clearance volume
- Real-time control unit (FPGA)
 - Sequential reservoir opening/closing based on pressure and piston position data [3]
- Fast acting commercial solenoid valves
 - Low flow resistance
 - ~1 billion cycle lifetime

[3] J. Hogan, Masters Thesis, MIT "Development of a Floating Piston Expander Control Algorithm for a Collins-Type Cryocooler", 2011.

Reducing Power Dissipation in the Cold Valves is Key

- Fixed voltage valve actuation does not allow efficient operation
- System controls valves using a short "high" voltage lift pulse followed by a longer low voltage hold pulse
- Current implementation results in a 4-fold decrease in power dissipated by the valves
- FPGA control unit allows real-time valve control

Valve power management board

11 W cooling power savings (11% at 100 W total lift)

Cryogenic Apparatus Overall Setup

Gas Reservoirs & Instrumentation

Warm End Valves

Counterflow HEX

Invar covered carbon fiber cylinder & piston

Cold End Valves

Control System Hardware

Prototype Cooldown Test

Robust Control and Operation

- Stable and distributed reservoir pressures and automatic system recovery are critical to efficient operation
 - Previous work did not achieve this in a closed system

Current control system is robust and stable in both steady state and against adverse events

Summary

- Cooling to 189 K despite an ambient heat leak
- Stable operation with new control system architecture
- Invar-jacketed graphite-epoxy floating piston developed
 - Lightweight
 - Low thermal conductivity
 - Dimensionally stable (Low CTE)
 - Hermetic

Next steps:

- Demonstrating 100 W @ 100 K
 - Increase cold port size
 - Reservoir volume increase \rightarrow Lower frequency operation
 - Fix the leak!

Cryogenic vacuum chamber setup

Updated cold cap

10

Thank you!

Acknowledgments

This work was funded by the National Aeronautics and Space Administration under project number 80NSSC21K0221.

The authors would like to thank **Dr. Jeffrey Feller** for the valuable discussions and guidance in this project.

Modified Collins Cycle & Fundamentals

Overall Performance

