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In this talk:

1. Modified Collins Cycle & Floating Piston Innovation
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3. Expander Construction Materials & Enabling Technologies

4. Experimental Results & Control System Performance



Modified Collins Cycle & Floating Piston Innovation

Medium-scale, continuous 
flow cryocooler featuring:

• Floating piston 
architecture 

• Active control system 

• Gas reservoir throttles 
dissipate the mechanical 
energy transferred from 
cryogenic temperature to 
room temperature by the 
floating piston

This approach:

• Enables high expander 
efficiency (75%+) 

• Allows high-pressure-ratio 
operation (10:1 to 15:1) 
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Focus of this 

presentation

Demonstrated operation reported at 2023 CEC-ICMC



Projected Cycle Efficiency & Prior Effort Challenges

2nd law efficiency 
projection: 20-25% [1]

Prior efforts:

• Hannon demonstrated 10 K 
cycle operation (with pre-
cooling @ 30 K) [2]

Identified improvement 
areas: 

 Mechanical reliability 

 Real-time control 
hardware

 Reservoir pressure 
stabilization
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ter Brake, Low temperature cryocooler survey, 2002

→ Projected efficiency: ~2.5x mean 

Strobridge efficiency curve

[1] M. Segado, Masters Thesis, MIT “Analysis and Mitigation of Key Losses in a Multi-Stage 25–100 K 

Cryocooler”, 2014.
[2] C. Hannon et al., “Development of a 4K-10K Collins-type cryocooler for space”, 2005.



New Floating Piston for High Reliability 

4Result: High reliability (in-space applications)

300 K

100 K

• First time demonstration of 
vacuum-insulated lightweight 
piston 

 Hollow graphite-epoxy composite 
with Invar coating (helium barrier)

 Previous work with G10 piston had 
reliability issues 

• Lightweight piston eliminates 
warm end seal and minimizes 
blowby

• CTE matched piston-cylinder to 
avoid jamming

• Composite material system 
minimizes heat leak due to large 
axial temperature gradient (300 K 
to 90 K)

~1 m

~10 cm

Piston-cylinder gap

75 microns



Enabling Technologies  

• Laser triangulation 
piston tracking input

 ± 60-micron accuracy 
to minimize clearance 
volume

• Real-time control 
unit (FPGA) 

 Sequential reservoir 
opening/closing based 
on pressure and 
piston position data 
[3]

• Fast acting 
commercial solenoid 
valves 

 Low flow resistance

 ~1 billion cycle 
lifetime

[3] J. Hogan, Masters Thesis, MIT “Development of a Floating Piston 

Expander Control Algorithm for a Collins-Type Cryocooler”, 2011. 5
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Reducing Power Dissipation in the Cold Valves is Key 

• Fixed voltage valve 
actuation does not allow 
efficient operation  

• System controls valves 
using a short “high” 
voltage lift pulse followed 
by a longer low voltage 
hold pulse

• Current implementation 
results in a 4-fold decrease 
in power dissipated by the 
valves

• FPGA control unit allows 
real-time valve control
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Valve power management board 

11 W cooling power savings (11% at 100 W total lift)

High power lift Low power hold

Saved power 

dissipation

(11W)
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Cryogenic Apparatus Overall Setup

Gas Reservoirs & 

Instrumentation

Cold End Valves

Invar covered 

carbon fiber 

cylinder & 

piston

Warm End Valves

Control 

System 

HardwareCounterflow 

HEX 



Prototype Cooldown Test
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Operating Conditions:

• Pressure ratio of  2.5 : 1 

• 3 Hz operating speed 

• Ultimate temperature limited by 

leak into the vacuum space

Expander discharge 

temperature vs time 

System tuning
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Robust Control and Operation

9

• Stable and distributed reservoir pressures and automatic system recovery 

are critical to efficient operation

• Previous work did not achieve this in a closed system

C

B

A

D

Vacuum leak Control system 

automatically recovers

System refill begins

Current control system is robust and stable in both steady state 

and against adverse events



Summary

• Cooling to 189 K despite an ambient 
heat leak

• Stable operation with new control 
system architecture

• Invar-jacketed graphite-epoxy 
floating piston developed

 Lightweight

 Low thermal conductivity

 Dimensionally stable (Low CTE)

 Hermetic

Next steps:
 Demonstrating 100 W @ 100 K

 Increase cold port size

 Reservoir volume increase → Lower 
frequency operation

 Fix the leak!
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Cryogenic 

vacuum 

chamber setup

Updated 

cold cap
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Thank you! 



Modified Collins Cycle & Fundamentals

Ideal P-V cycle diagram:

Radebaugh, Cryocoolers, state of the art and recent developments, 2009

Modified Collins



Overall Performance


