

Mesoscopic Numerical Study of Cryogenic Bubble Generation and Liquid-Vapor Interface Movement in Microgravity

Speaker: HangJin Jo¹

Co-author: Hoongyo Oh¹, Seungwhan Baek², Isang Yu²

¹Pohang University of Science and Technology [POSTECH] ²Korea Aerospace Research Institute

ICEC/ICMC

29th International Cryogenic Engineering Conference **International Cryogenic Material Conference 2024** July 22-26, 2024, Geneva, Swinzer And

Contents

CHAPTER

Thtroduction

Thermal Hydraulics & Energy System
THE System Lab

ICEC/ICMC

ernational Cryogenic Material Com
July 22-26, 2024, Geneva, S

Boiling Curve

High speed visualization of film boiling

High speed visualization of nucleate boiling

Space Exploration

- Launch vehicle with **cryogenic propellants**
	- Liquid oxygen (90 K), liquid methane (120 K), liquid hydrogen (20 K)
- Cryogenic propellants with extreme thermophysical property
	- Extremely low temperature ($T < 100 K$)
	- Gas vs fluid density = 1000 vs 1 kg/m³
- Extreme propellants with Extreme structures
	- **EXECOMPARED COMPARED SHEET** Compared like flying beer bottle
- **Upper stage with cryogenic propellants!**

I. Introduction

Space Exploration

- Restart Failure of Atlas-Centaur 4 (1964)
- KSLV-II NURI $1st$ Launch failure (3rd stage)
- What happens to fluid in microgravity??
	- **subcooled liquid in microgravity**
- What happens to cryogenic propellants in microgravity **when the wall is hot?**
	- **saturated (or boiling) liquid in microgravity**

ICEC/ICMC n nadonal cryogenic Material C
July 22-26, 2024, Geneva

n

0000

Research Trend for Space Exploration

- **Microgravity experiments**
	- Drop tower... &
- Compared with CFD
	- **Two-Fluid model**
	- **v** VOF(Volume of Fluid) method

Another candidate for the cryogenic boiling simulation → **Lattice Boltzmann Method (LBM)**

0.02 0 0.04 0.01 0.02 0.03 0.05 TIME= 0.0000

6

N

CHAPTER

III Lattice Boltzmann Method

Introduction of Lattice Boltzmann Method (LBM)

Benchmark Tests

 Δt

 $c_i f_i = \sum$

 $\left(\frac{1}{2}\right)$, $\eta_B =$

i

 $\frac{1}{\tau} f_i^{(2)}$

ICEC/ICMC

ernational Cryogenic Material Conf
July 22-26, 2024, Geneva, Si

2

 $c_i f_i^{eq} = \rho \mathbf{u}$

3 η

2. Interaction force & Forcing scheme

Phase segregation between different phases can emerge **automatically** as a result of **particle interaction**

Attraction **+4** Repulsion \leftarrow \rightarrow

 $F_{interface} = \kappa \rho \nabla \Delta \rho \quad \quad \bm{P}_{FE} = \left(p_{EOS} - \kappa \rho \nabla^2 \rho - \right)$ κ 2 $|\nabla \rho|^2$ | $I + \kappa \nabla \rho \nabla \rho$

Shan-Chen discretized interaction force : $F^{SC}(x) = -\psi(x)G \sum_i w_i \psi(x + c_i \Delta t) c_i \Delta t$

Thermal Hydraulics & Energy System **THE System Lab**

Pressure tensor term with Shan-Chen interaction force :

$$
\boldsymbol{P}_{SC} = \left(p_b + \frac{c_s^2 G}{2} \psi^2 \right) + \frac{c_s^4 G}{4} (\nabla \psi)^2 + \frac{c_s^4 G}{2} \psi \Delta \psi \bigg) \boldsymbol{I} - \frac{c_s^4 G}{2} \nabla \psi \nabla \psi
$$

Equation of state

LE with Guo force term
\n
$$
f_i(x + c_i \Delta t, t + \Delta t) - f_i(x, t) = -\frac{\Delta t}{\tau} \Big(f_i(x, t) - f_i^{eq}(x, t) \Big) + \left(1 - \frac{\Delta t}{2\tau} \Big) F_i \Delta t
$$
\n
$$
F_i = w_i \Big(\frac{c_{i\alpha}}{c_s^2} + \frac{(c_{i\alpha}c_{i\beta} - c_s^2 \delta_{\alpha\beta})u_{\beta}}{c_s^4} \Big) F_{\alpha} \Bigg[\frac{External force}{External force}
$$
\n
$$
\rho = \sum_i f_i \qquad \rho \mathbf{u} = \sum_i c_i f_i + \frac{F}{2}
$$

ICEC/ICMO

3. Equation of state (EOS)

Maxwell area construction rule that allows to obtain phase transition densities :

$$
p_0 = c_s^2 \rho_g + \frac{c_s^2 \Delta t^2 G}{2} \psi^2(\rho_g) = c_s^2 \rho_l + \frac{c_s^2 \Delta t^2 G}{2} \psi^2(\rho_l)
$$

Equation of state (EOS) : Included in the interaction force → **Enabling phase segregation**

$$
p_b + \frac{c_s^2 G}{2} \psi^2 = p_{EOS} \rightarrow \psi(x) = \sqrt{\frac{2(p_{EOS} - \rho c_s^2)}{G c_s^2}}
$$

Ex) Peng-Robinson EOS

$$
p_{\text{EOS}} = \frac{\rho RT}{1 - b\rho} - \frac{a\varphi(T)\rho^2}{1 + 2b\rho - b^2\rho^2}
$$

$$
\varphi(T) = \left[1 + \left(0.37464 + 1.54226\omega_{acentric} - 0.26992\omega_{acentric}^2\right)\left(1 - \sqrt{T/T_c}\right)\right]^2
$$

 $a = 3/49, b = 2/21, R = 1,$ $\omega_{acentric} = 0.022$ (for oxygen)

Fig. Phase segregation (Isothermal)

II. Lattice Boltzmann Method

4. Coupling Temperature

Thermodynamic relation of entropy
$$
T ds = c_v dT + T \left(\frac{\partial P}{\partial T}\right)_v dv = c_v dT + T \left(\frac{\partial P}{\partial T}\right)_v d\left(\frac{1}{\rho}\right) = c_v dT - T \frac{1}{\rho^2} \left(\frac{\partial P}{\partial T}\right)_v d\rho
$$

\n**Entropy balance equation** $\rho T \frac{ds}{dt} = \nabla \cdot (\lambda \nabla T)$ $\frac{dT}{dt} = \nabla \cdot \left(\frac{\lambda}{\rho c_v} \nabla T\right) + \frac{T}{\rho^2 c_v} \left(\frac{\partial P}{\partial T}\right)_\rho \frac{d\rho}{dt}$ **Mass conservation** $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho U) = 0$

\n**Energy (Heat) equation with source term**

\n**3**

\n**3**

\n**3**

\n**4**

\n**5**

\n**6**

\n**7**

\n**8**

\n**9**

\n**1**

\n**1**

\n**1**

\n**1**

\n**2**

\n**2**

\n**3**

\n**4**

\n**4**

\n**5**

\n**6**

\n**6**

\n**7**

\n**8**

\n**9**

\n**1**

\n**1**

\n**1**

\n**2**

\n**2**

\n**3**

\n**4**

\n**5**

\n**6**

\n**7**

ICEC/ICMC

International Cryogenic Material Confer
July 22-26, 2024, Geneva, Sw

Thermal Hydraulics & Energy System
THE System Lab

II. Lattice Boltzmann Method

Benchmark Tests

Test 1 : Phase segregation (↓) → **Validation of thermodynamic consistency (Matching separated density with EOS value)**

Test 2 : Wetting method (→) → **Validation of interfacial wetting method**

 $\psi_{interfacial} = \psi_{x,y<0} = G_w \psi_{x,y=0}$

ICEC/ICMC

Institute Cryogenc Mater
July 22-26, 2024, Ger

Thermal Hydraulics & Energy System **THE System Lab**

Fig. Contact angle with interfacial wetting method

CHAPTER

THE Microgravity Boiling Results

- **Drop Tower Test**
- **LBM Simulation Setup** $\overline{2}$
- $\overline{3}$ **Microgravity Boiling Results**

Drop tower test

Thermal Hydraulics & Energy System
THE System Lab

Journal of the Korean Society of Propulsion Engineers - Vol. 25, No. 4, pp.78-87

Simulation Setup

Wetting method : Interfacial method (Gw=1.2) **ICEC/ICMC**

July 22-26, 2024, Gene

Thermal Hydraulics & Energy System **THE System Lab**

ICEC/ICMC luly 22-26, 2024, Ger

Simulation Case _ No Boiling (Subcooled)

Fig. Gravity change over simulation time

Subcooled liquid fluid motion in 0g (Fluid: O2) Subcooled liquid fluid motion in 0g (Fluid: Novec)

ICEC/ICMC luly 22-26, 2024, Ger

Simulation Case _ Boiling (Saturation)

time (s) 2 7 2.1 Gravity level 1g 0.01 g Gravity (1g \rightarrow 0.01g) → **Hydrostatic pressure decrease** $\Delta U = Q - W$ $\rightarrow C_v \Delta T = 0 - v \Delta P$ $\rightarrow T_2 = T_1 -$ 1 $\rho \mathcal{C}_v$ ΔP $\Delta P = \rho_f g$ $h - y$ ℎ

Fig. Gravity change over simulation time

Saturated liquid fluid motion in 0g (Fluid: O2)

Saturated liquid fluid motion in 0g (Fluid: Novec)

Results Comparison

- 1. Liquid level change
	- Subcooled and saturated liquid shows different liquid level after gravity change

ICEC/ICM

- Similar liquid level is shown in LBM simulation results compared with experimental results

Thermal Hydraulics & Energy System **THE System Lab**

- 2. Bubble size change
	- Size of both bubbles attached to the bottom and departing into the bulk flow are increased as gravity changes
	- LBM could reproduce this phenomena

CHAPTER

IV Conclusion

Conclusion

Conclusion

0. cryogenic propellants are the promising candidates for the more upper stage of space exploration. However, due to its extreme thermophysical properties, further studies should be responsible.

1. LBM is adopted for the cryogenic boiling simulation due to its kinetic characteristics

2. Boiling under the microgravity is reproduced through the drop tower test and numerical simulation with LBM

3. LBM could reproduce boiling phenomena under the microgravity

ICEC/ICMC

ernational Cryogenic Material Co.
July 22-26, 2024, Geneva, 1

E-mail: jhj04@postech.ac.kr

II. Implementation of Lattice Boltzmann Method

4. Boundary Condition - Wall Boundary Treatment

After colliding and streaming, Unknown distribution should be defined + Force term should correctly be included in the wall boundary treatment

$$
\rho_k = \sum_{3,4,5} f_i \, , \rho_0 = \sum_{0,2,6} f_i \, , \rho_{uk} = \sum_{1,7,8} f_i
$$

$$
\rho = \rho_k + \rho_0 + \rho_{uk}
$$
 and $\rho u_1 = \rho_{uk} - \rho_k + 0.5F_1$,

$$
\rho = \frac{1}{1 - u_1} (2\rho_k + \rho_0 - 0.5F_1)
$$

a. Zou-He (Non-equilibrium Bonce-back method) ҧ $f_i^{neq}(x_b, t) = f_i^{neq}(x_b, t) - (n \cdot c_i)N_n - (t \cdot c_i)N_t$ $(c_{\bar{i}} = -c_i)$ *only replace unknown distributions*

$$
\begin{cases}\nf_8^{neq} = f_4^{neq} + N_y \\
f_1^{neq} = f_5^{neq} + N_y - N_x \rightarrow \begin{cases}\nf_8 = f_4 + \frac{2\rho u_y}{3c} + N_y \\
f_1 = f_5 + \frac{\rho(-u_x + u_y)}{6c} + N_y - N_x \\
f_2 = f_3 + \frac{\rho(u_x + u_y)}{6c} + N_y + N_x\n\end{cases} & f_1 = f_5 + \frac{(f_6 - f_2)}{2} - \frac{\rho u_x}{2} + \frac{\rho u_y}{6} + \frac{F_x}{4} - \frac{F_y}{6} \\
f_2 = f_3 + \frac{\rho(u_x + u_y)}{6c} + N_y + N_x & f_7 = f_3 - \frac{(f_6 - f_2)}{2} + \frac{\rho u_x}{2} + \frac{\rho u_y}{6} - \frac{F_x}{4} - \frac{F_y}{6}.\n\end{cases}
$$

ICEC/ICMC

unadonal Cryogenic Mace
July 22-26, 2024, Ger

Thermal Hydraulics & Energy System **THE System Lab**

22

4. Boundary Condition - Wall Boundary Treatment

b. Regularized boundary method *replace all of distributions*

 $f_i^{neq} = -\frac{t_i}{c^2}$ $c_s^2\omega$ \bm{Q}_i : $\rho \vec{V}_1 \vec{u} - \vec{c}_i \vec{V}_1$: $\rho \vec{u} \vec{u} +$ 1 $\left[\frac{1}{2 c_s^2} (\vec{c}_i \cdot \vec{V}_1) (\bm{Q}_i ; \rho \vec{u} \vec{u}) \right] -$ 1 2 t_i $\frac{c_l}{c_s^2} \vec{c}_l \cdot \vec{F}$ – t_i $4c_s^4$ $\frac{1}{4} \boldsymbol{Q}_i$: $(\vec{F} \vec{u} + \vec{u} \vec{F}$

$$
\Pi_{\alpha\beta}^{(1)} = \sum_{i} Q_{i\alpha\beta} (R_{i\gamma\delta} + I_{i\gamma\delta}) = \sum_{i} t_i Q_{i\alpha\beta} Q_{i\gamma\delta} T_{\gamma\delta} + 0 = c_s^4 (T_{\alpha\beta} + T_{\beta\alpha}).
$$

 \mathbf{Q}_i : $\Pi^{(1)} = c_s^4 \mathbf{Q}_i$: $(\mathbf{T} + \mathbf{T}^T) = 2c_s^4 \mathbf{Q}_i$: T

Regularized boundary method :

$$
f_i^{neq} \approx \bar{f}_i^{(1)} = R_i = \frac{t_i}{2c_s^4} \mathbf{Q}_i : \mathbf{\Pi}^{(1)}
$$

With NEBB method:

$$
\Pi^{(1)} = \sum_i \mathbf{Q}_i f_i^{(1)}
$$

density and momentum are only conserved during collision

***With Finite Difference method:**

$$
\Pi^{(1)} = -\frac{2c_s^2}{\omega}\rho S - \frac{1}{2}(\vec{F}\vec{u} + \vec{u}\vec{F}) \text{ where } S = \frac{1}{2}(\nabla u + (\nabla u)^T).
$$

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L
$$

Thermal Hydrotaulics & Energy System

\n**THE System Lab**

\n

1	8	7
$Q_i = c_i c_i - c_s^2 I$	8	
$\frac{t_i}{4c_s^4} Q_i$: $(\vec{F} \vec{u} + \vec{u} \vec{F})$	2	
3	4	5

ICEC/ICMC

ICEC/ICMC July 22-26, 2024, Geneva, S

4. Boundary Condition - Wall Boundary Treatment

Fig. Maximum achievable Reynolds number

4. Boundary Condition - Outlet Boundary Treatment

0. Periodic boundary condition

Connect inlet and outlet boundary as continuous domain \rightarrow Improper for investigation about certain domain

1. Pressure Boundary condition

Gives constant pressure (density) at the outlet boundary

2. Outflow boundary condition

2-1 Neumann condition $\frac{\partial f}{\partial x}$

$$
\frac{\partial f}{\partial x} = 0
$$

\n
$$
\rightarrow f(N, j) = f(N - 1, j)
$$

2-2 Extrapolation condition

$$
\frac{\partial^2 f}{\partial x^2} = 0
$$
\n
$$
\rightarrow f(N,j) = 2f(N-1,j) - f(N-2,j)
$$

2-3 Convective condition

$$
\frac{\partial f}{\partial t} + U \frac{\partial f}{\partial x} = 0
$$

\n
$$
\rightarrow f(N, j, t + \delta t) = \frac{f(N, j, \delta t) + U(N - 1, j, t + \delta t)f(N - 1, j, t + \delta t)}{1 + U(N - 1, j, t + \delta t)}
$$

Thermal Hydraulics & Energy System **THE System Lab** **ICEC/ICMO**

July 22-26, 2024, Gene

Fig. Vortex shedding onto square box, Re=10,000, (a) Pressure BC, (b) Convective BC

 $x = N$

4. Boundary Condition - Wetting Method

ICEC/ICMC

luly 22-26, 2024, Gen

Thermal Hydraulics & Energy System **THE System Lab**

Fig. Various contact angles

[1] Wu, Suchen, Yongping Chen, and Long-Qing Chen. "Three-dimensional pseudopotential lattice Boltzmann model for multiphase flows at high density ratio." *Physical Review E* 102.5 (2020): 053308. [2] Do Hong, Seung, Man Yeong Ha, and S. Balachandar. "Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation." Journal of colloid and interface science 339.1 (2009): 187-

 G_w

 θ_d 115

July 22-26, 2024, Gene

27

4. Boundary Condition - Wetting Method

Interfacial and modified pseudopotential based methods reproduce similar density trends with MD result

Interfacial and modified pseudopotential based methods could reproduce similar ONB trends with analytic models.

Interfacial method gives more precise results

28

[1] Zhao, Hui, Leping Zhou, and Xiaoze Du. "Bubble nucleation on grooved surfaces with hybrid wettability: molecular dynamics study under a transient temperature boundary condition." International Journal of Heat and Mass

Shear lift force and surface tension force are dominant (same with experimental result)

Thermal Hydraulics & Energy System

ICEC/ICMC

Only interfacial wetting method makes different force trend with reference case → **Bubble lift-off occurs during sliding (total force > 0)**

Interfacial method is proper for boiling with corner configuration

Fig. Force analysis of departing bubble (\sim 70 $^{\circ}$)

Time step (after departure)

3000 4000 5000

 $- - F_{total, x_ref}$

6000

7000

-8 -10 -12 -14

 -16

 Ω

1000

2000

5. Proper Unit Conversion

Unit conversion in LBM $Q_{pu} = C_0 \times Q_{lu}$, same with 'Buckingham π theorm'

Difficulties of unit conversion in LBM

1. Velocity limitation from chapman-enskog analysis

$$
\Pi_{\alpha\beta}^{(1)} = -\rho c_s^2 \tau \left(\partial_{\beta}^{(1)} u_{\alpha} + \partial_{\alpha}^{(1)} u_{\beta} \right) + \tau \partial_{\gamma}^{(1)} \left(\rho u_{\alpha} u_{\beta} u_{\gamma} \right)
$$

2. Sufficient stability condition : Non negative distribution

$$
\left(\tau - \frac{\Delta t}{2}\right) > 0
$$

3. Relaxation time stability limit from *von Neumann* analysis 2

- *negligible if* $u^2 \ll c_s^2$ \rightarrow LBM is valid for "weakly compressible" flow
	- +3. Properties relation with EOS

$$
p_{\text{EOS}} = \frac{\rho RT}{1 - b\rho} - \frac{a\varphi(T)\rho^2}{1 + 2b\rho - b^2\rho^2},
$$

July 22-26, 2024, Ge

$$
\varphi(T) = \left[1 + (0.37464 + 1.54226\omega_{acentric} - 0.26992\omega_{acentric}^2)\left(1 - \sqrt{T/T_c}\right)\right]^2
$$

 $a:$ attraction parameter $b:$ repulsion parameter

Arbitrary choice of lattice value is impossible

Equation of State and Surface Tension

 $F = \kappa \rho \nabla \Delta \rho$. Surface tension in diffuse interface model

$$
\begin{split}\n\partial_{\alpha}p_{b} - F_{\alpha} &= \partial_{\alpha}p_{b} - \kappa \rho \partial_{\alpha}\partial_{\gamma}\partial_{\gamma}\rho = \partial_{\alpha}p_{b} - \kappa \partial_{\alpha}(\rho \partial_{\gamma}\partial_{\gamma}\rho) + \kappa (\partial_{\alpha}\rho)\partial_{\gamma}\partial_{\gamma}\rho \\
&= \partial_{\alpha}p_{b} - \kappa \partial_{\alpha}(\rho \partial_{\gamma}\partial_{\gamma}\rho) + \kappa \partial_{\gamma}((\partial_{\alpha}\rho)(\partial_{\gamma}\rho)) - \kappa (\partial_{\gamma}\rho)\partial_{\alpha}\partial_{\gamma}\rho \\
&= \partial_{\beta}P_{\alpha\beta}.\n\end{split}
$$
\n
$$
\begin{split}\n\partial_{\alpha}p_{b} - F_{\alpha} &= \partial_{\alpha}p_{b} - \kappa \partial_{\alpha}(\rho \partial_{\gamma}\partial_{\gamma}\rho) + \kappa \partial_{\gamma}((\partial_{\alpha}\rho)(\partial_{\gamma}\rho)) - \kappa (\partial_{\gamma}\rho)\partial_{\alpha}\partial_{\gamma}\rho \\
&= \partial_{\beta}P_{\alpha\beta}.\n\end{split}
$$
\n
$$
\begin{split}\n\partial_{\alpha}p_{b} - F_{\alpha} &= \partial_{\alpha}p_{b} - \kappa \partial_{\alpha}(\rho \partial_{\gamma}\partial_{\gamma}\rho) + \kappa \partial_{\gamma}((\partial_{\alpha}\rho)(\partial_{\gamma}\rho)) - \frac{\kappa}{2}\partial_{\alpha}((\partial_{\gamma}\rho)^{2}) \\
&= \partial_{\beta}P_{\alpha\beta}.\n\end{split}
$$
\n
$$
\begin{split}\nF_{\text{FE}} &= \int p_{\text{FOS}} - k \rho \nabla^{2}\rho - \frac{k}{2}|\nabla\rho|^{2} |I + k \nabla\rho\nabla\rho\n\end{split}
$$

Standard free energy functional pressure tensor

Discretized interaction force : $F^{SC}(x) = -\psi(x)G \sum_i w_i \psi(x + c_i \Delta t) c_i \Delta t$ Continuum form of **Shan-Chen force** : $F^{SC}(x) = -G\psi(x)(c_s^2 \Delta t^2 \nabla \psi(x) + \frac{c_s^4 \Delta t^4}{2})$ $\frac{\Delta t}{2} \nabla \Delta \psi(x)$ **Taylor expansion**

Divergence of Pressure tensor

Pressure tensor from SC interaction force (Continuum term)

$$
\nabla \cdot \mathbf{P}^{\text{SC}} = \nabla (c_s^2 \rho) - \mathbf{F}^{\text{SC}} \longrightarrow \n\begin{array}{c}\n\mathbf{P}_c = \left(\rho c_s^2 + \frac{Gc^2}{2} \psi^2 + \frac{Gc^4}{12} |\nabla \psi|^2 + \frac{Gc^4}{6} \psi \nabla^2 \psi \right) \mathbf{I} - \frac{Gc^4}{6} \nabla \psi \nabla \psi \\
\text{Equation of state}\n\end{array}
$$

Pressure tensor from SC interaction force (Discrete term)

$$
\mathbf{P} = \left(\rho c_s^2 + \frac{Gc^2}{2}\psi^2 + \frac{Gc^4}{12}\psi \nabla^2 \psi\right) \mathbf{I} + \frac{Gc^4}{6}\psi \nabla \nabla \psi.
$$

$$
= \partial_{\beta} P_{\alpha\beta}.
$$
 Equation of state Surface tension

$$
P_{FE} = \left(p_{EOS} - k \rho \nabla^2 \rho - \frac{k}{2} |\nabla \rho|^2 \right) I + k \nabla \rho \nabla \rho
$$

Divergence of Pressure tensor

Equation of state Surface tension

 $P_{FE} =$

Mechanical stability condition

Define G by Mechanical stability condition

Thermodynamic consistency

MRT Forcing scheme Forcing term (left) Original (right) Improved Interaction force Pressure tensor Taylor expanding Pressure tensor normal to interface = 0, = 3 ℎ - isotropy에 의해 결정

Mechanical stability condition

Equation of State and Energy Equation

 → **Pseudopotential =** (−) + **Equation of state :** = **Peng-Robinson Equation of state** : = 0.344 **Temperature should be calculated to specify equation of state (Density can be calculated by LBM) Thermodynamic relation of entropy Entropy balance equation Mass conservation From LBMSource term which responsible for phase change Energy (Heat) equation with source term**

Energy equation with source term should be solved and coupled to specify equation of state

Finite Difference Method

Energy (Heat) equation with source term

From LBM
\n
$$
\frac{\partial T}{\partial t} + \nabla \cdot \left[\mathbf{U} T \right] = \nabla \cdot (\alpha \nabla T) + \phi \qquad \phi = T \left[1 - \frac{1}{\rho c_v} \left(\frac{\partial p}{\partial T} \right)_{\rho} \right] \nabla \cdot \mathbf{U}
$$
\n
$$
\partial_t T = -\mathbf{v} \cdot \nabla T + \frac{1}{\rho c_v} \nabla \cdot (\lambda \nabla T) - \frac{T}{\rho c_v} \left(\frac{\partial p_{\text{EOS}}}{\partial T} \right)_{\rho} \nabla \cdot \mathbf{v}.
$$

Directly solve with FDM method

4 th order Runge-Kutta Method

$$
T^{t+\delta_t} = T^t + \frac{\delta_t}{6} (h_1 + 2h_2 + 2h_3 + h_4),
$$

\n
$$
h_1 = K(T^t), h_2 = K\left(T^t + \frac{\delta_t}{2}h_1\right), h_3 = K\left(T^t + \frac{\delta_t}{2}h_2\right)
$$

\n
$$
h_4 = K(T^t + \delta_t h_3).
$$

• k_1 is the slope at the beginning of the interval, using y (Euler's method);

- k_2 is the slope at the midpoint of the interval, using y and k_1 ;
- k_3 is again the slope at the midpoint, but now using y and k_2 ;
- k_4 is the slope at the end of the interval, using y and k_3 .

Solve the energy equation directly with FDM