

Feasibility study on synthermal storage of two cryogens in a single tank with a metal common bulkhead

Wujie Zhang,

Jiaxu Zhang, Ruijiao Miao, Peng Li, Dongbao Wang, Peijie Sun, Bin Wang, Wenbing Jiang and Yonghua Huang

Shanghai Jiao Tong University, China

Wed-24-07-24

Content

ONTENT

C

2

Experiment

Results & discussion

Efficient storage method for the long-term storage of liquid oxygen and liquid methane is crucial for space exploration!

Common bulkhead storage

- **©** Common bulkhead (CBH) storage is one of the most compact and promising storage methods.

A look inside the 2017 version of SpaceX's 9m-diameter nonadiabatic CBH tank in Starship

SJTU

Challenge and Motivation

Experiment

Results & discussion

Common bulkhead storage experimental system

Common bulkhead storage experimental system

Table 1 Main parameters of the CBH tank **Parameters** Value Unit **Inner diameter** 194 mm Wall thickness 3 mm Height 200 mm **Total volume** 4.25 L **Volume for LOX** 2 Volume for LCH₄ 2.25 **Material of CBH** Stainless-steel single-layer partition

Parameters	Instrument	Range	Uncertainly
Temperature	PT-100	77 K-400 K	±0.1 K
Pressure	Gefran Pressure transducer	0 kPa-600 kPa	0.25% FS
Mass flow rate	Alicat® Flowmeter	0 -250 SLPM	\pm 0.8% of reading and \pm 0.2% FS
CBH temperature	LakeShore model335	4 K-400 K	±0.05 K

Table 2 Main measurement instruments

Fig. 2 Thermal resistance network

Fig. 1 Thermometer distribution

Experiment

Results & discussion

Heat leakage and storage pressure

Table 1 Test matrix of the common bulkhead storage

Subatmospheric pressure is eliminated!

The residual gas in pipelines has minor effect!

Thermal stratification in the CBH tank

We see the set of the

Average temperature and the temperature gradient in the LCH₄ compartment increase by 1.1 K and 8.9%, respectively. A distinct thermal stratification occurs in the liquid oxygen region inside the liquid oxygen compartment.

Storage duration and venting frequency

Self-pressurization and venting process

- \blacktriangleright Frequent oxygen venting suppresses the temperature fluctuations in the LCH₄ compartment
- \blacktriangleright In the helium-mixing scheme, the initial self-pressurization stages in the helium-mixing scheme are shorter. 14

Mass loss during the self-pressurization and venting process.

In the helium-mixture scheme, the self-pressurization and venting storage durations for LOX and LCH₄ increase by 38.30% and 9.77%, respectively.

Experiment

Results & discussion

Conclusions

A helium-mixing scheme is proposed to improve the pressure performance in a nonadiabatic common bulkhead tank designed for storing liquid oxygen and liquid methane.

- Helium-mixing scheme shows a promising potential to enhance the storage performance
- b The subatmospheric pressure in the LCH₄ compartment is eliminated.
- Minor effect on the thermal stratification of the LOX compartment
- Prolonging storage durations of both LOX and LCH₄
- The nonadiabatic common bulkhead contributes to prolonging the total storage duration of liquid methane
- Solution Not only prevents the methane venting behavior but also suppresses the temperature fluctuations in the liquid methane compartment

E-mail: huangyh@sjtu.edu.cn