

Dedicated to innovation in aerospace

Modelling LH2 tank operations for hydrogen-powered aircraft using generalised thermal models

Arne K. te Nijenhuis¹, Thomas Ganzeboom¹, Gideon Elfrink¹, Grzegorz Kruczek² and Przemysław Kałuża²

> ¹ Royal NLR – Netherlands Aerospace Centre, Marknesse, The Netherlands ² Collins Aerospace – Global Engineering and Technology Center, Wrocław, Poland

This NLR presentation is provided to the audience of the 29th International Cryogenics Engineering Conference, Geneva, July 2024.

This NLR document is protected by copyright

- Show the value of single-node analyses for modelling LH2 tank operations
- Show methods for (i) TRL3 proof of concept testing and (ii) model validation, at component/subsystem-level for the functional operation of a LH2 tank
- Rethink the current-day design philosophy of LH2 tank thermal design for aircraft implementation

COCOLIH2T CAD-design of LH2 tank Courtesy of Collins Aerospace

COCOLIH2T: LH2-tank design

- Conformal-shaped double-walled tank, insulated by vacuum and MLI
- Carbon-fibre composite laminate as base material for inner and outer tank
- Reduction of thermal bridging by advanced connector topology
- 1100 L, 4 bar(a), 57 kg LH2

TRL 2: Concept definition and coupon material testing

TRL 3: Proof of concept testing and model validation at component/subsystem level

End of project

Now

TRL 4: System thermal, mechanical, and functional validation with LH2

Towards EIS 2035

Heat ingress via R4	Budget
MLI + vacuum *	20 W
H2 tubing incl. H2	10 W
Inner-outer tank connectors	2 W
Wires (incl. LH2 gauge)	1 W
Total	33 W (dormancy max = 35 W)

- 1D resistance network modelling
- Performance of MLI critical in R4
- *Note that H2 permeability through carbon-fibre composite inner tank deteriorates performance of MLI

- Single-node p,h analysis of tank twophase state
- $\Delta h = T\Delta s + v\Delta p$
- Steady-state, applicable for first order analysis of dormancy, defuelling, and pressure management

Defuelling (42 g/s) and Pressure Management

- Modelling operations using the single-node model
- Ambient temperature GH2 feed for pressurization

Various concepts:

- Heating element
 - Internal/external to inner tank
- Warm GH2-feed into cold GH2
- Warm GH2-feed into cold LH2
- Feedback line from LH2-line
- → When LH2 defuelling out of tank is 42 g/s, the GH2 pressurization flow only needs to be 0.2 g/s

GH2

PRV

 $p_{tank} = 4 bar(a)$

Schematic of PMS

BD

- MLI temperature distribution
 - Validated internal temperature in a 10-layer pack of COOLCAT 2 NW ^[1] by heat flux testing in NLR's thermal vacuum chamber
 - T_{shroud} = [-150, -100, -50] °C
 - T_{heater} = [20, 100] °C

COCOL

- P_{heater} in order of 0-5 W
- → Model validation achieved

MLI testing Courtesy of NLR

- c_p-determination of composite material;
 - Via molar mass, Debye temperature, and mean thermal energy expression:

$$\langle E \rangle = 9Nk_BT \left(\frac{T}{\theta_D}\right)^3 \int_0^{x_D} \frac{x^3}{e^x - 1} dx$$

- h-estimation by pool boiling relations
 - Leidenfrost effect plays significant role
 - A low through-plane thermal conductivity (k₃) of the inner tank wall results in overcoming Leidenfrost quicker

Tank refuelling characteristics

- Mass of LN2 needed for cooldown to 77 K: 199.5 kg
- LN2 refuelling will continue until 77 K is reached;
- After LH2-refuelling: in the order of 100g's of LH2 boil-off due to thermal mass of tank structure

	Filling	Composite inner tank	MLI ^[1] COOLCAT 2 NW	G10-CR structure	Total fluid use
Component		115 kg	6.3 kg	8.5 kg	
LN2	150 kg	46.1 kg	0.28 kg	3.1 kg	199.5 kg
LH2	57 kg	0.12 kg	0.02 kg	0.09 kg	57.23 kg

[1] product by Beyond Gravity GmbH

Arguments for aircraft LH2-tank design requirements as result of operation

- 2% boil-off/day has been considered as a design point in requirement phases. → However, dormancy simulations show that there's plenty of heat ingress budget for initial pressurization
- For early entry-into-service aircrafts, on-ground systems shall cover for boil-off during on-ground dormancy
- During flight operation, withdrawal of LH2 is a stronger enthalpy gain than the enthalpy gain by steady-state heat ingress

- The presented study shows the applicability of a single-node analysis for LH2 tank operations simulations
- This study has enabled the COCOLIH2T LH2-tank design to progress towards TRL4 demonstration at end of project
- A toolbox was developed for refuelling modelling, incl. a verified MLI-model, c_p(T)-curve of carbon-fibre composite laminates, and specification of a refuelling operation, using LN2 and LH2
- Lastly, the design philosophy of aircraft LH2 tank design was challenged

COCOLIH

The work shown here was performed in the **COCOLIH2T** project. This project has been supported by Horizon Europe in the Clean Hydrogen programme, under Grant Agreement number **101101404**. This publication reflects the author's view. The European Union's Horizon Europe research and innovation programme is not responsible for any use that may be made of the information.

Co-funded by the European Union

Clean Hydrogen Partnership

Thanks for your attention!

See you at Univ. of Twente! 16-17 October 2024

Arne.te.Nijenhuis@nlr.nl

4th International Workshop on Cryogenic Electric Powertrains

16-17 October 2024 University of Twente, Enschede, The Netherlands

Not-for-profit workshops on developing and commercialising high power density hydrogen electric powertrains for aviation, wind turbines, etc

efats.info