

Experimental investigation of a cryogenic PCHE (Printed circuit heat exchanger)

Reporter: Zixin Zhang

Advisor: Professor Liang Chen

Xi'an Jiaotong University

2024.07.25

Structure design and experimental platform

CONTENTS

Experimental results

Cryogenic Storage Device in the Chinese Space Station 193 K-277 K

Zero-Boil-Off Storage of Cryogenic Propellants 20 K-90 K

Cryogenic Requirements for Space-Based Infrared Cameras 80 K

Reverse Brayton Refrigerator

Space cryogenic technology

a key technology for many future aerospace missions

Reverse Brayton refrigerator

the optimal approach for getting deep & large cooling capacities

Compact cryogenic heat exchangers

As the bulky and key components, need to achieve upgrades in volume and efficiency

Research content

(1) Propose the structural design and fabrication method of an efficient PCHE with smalltemperature-difference and large-temperature-span.

(2) Conduct a 80 K thermal-hydraulic performance testing system, demonstrate the excellent performance of the cryogenic PCHE.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(3) Analyse the effects of operation parameters on the cryogenic PCHE.

(4) Compare and analyse the difference between experimental and numerical simulation.

Structure design and experimental platform

Experimental results

Requirement & Solution

Design Requirement

	Fluid-hot side	Fluid-cold side
Working fluid	Ne	Ne
Mass flow rate g/s	9	9
Inlet temperature K	313	80
Inlet pressure kPa	280	192
Heat exchange effectiveness requirement	97.5%	97.5%
Allowable pressure drop kPa	6	8
Definition		
Heat exchange $\mathcal{E} = \frac{Q_{actual}}{Q_{max}} = \frac{1}{m}$	$\frac{m_{fluid}c_{p,hot}\Delta T_{hot}}{m_{fluid}c_{p,min}(T_{hot,in}-T_{cold,in})}$	
- Fabrication Scheme		
 Metal etching Diffusion bonding 		
Diffusion bonding		
Thickness2 Thickness1 Thickness2		Cold fluid Solid Hot fluid

Distribution zone Fixed zone Inlet/Outlet zone Cover plate

Experimental testing platform

1-

西安交通大學

Experimental testing platform

Pt100 number

Unit Uncertainty 0.2 Κ MPa 0.25% kPa 0.25% 0.1% Mass flow rate L·min⁻¹ 1.5% Heat exchange 5.2%

Uncertainty: 0.2 °C **Before calibrate**

15

Pt100 number

20

g

30

25

Numerical model

西安交通大

CONTENTS

Structure design and experimental platform

Experimental results

西安交通大

Mass flow-Thermal characteristic **Mass flow-Hydraulic characteristic** 3.5 99.0% Experiment — Numerical simulation (kPa) Experiment — Numerical simulation 3.0 effectiveness **d**c02.5 97.5% Pressure 2.0 96.0% Heat tranfer 1.5 Hot side 94.5% 1.(Experiment — Numerical simulation (kPa) 93.0% 0.5 1.0 1.5 2.0 2.5 3.0 **Pressure drop** Mass flow rate (g/s) 3 Mass flow increases: Heat transfer effectiveness increases Pressure drop increase

0.5

1.0

1.5

Mass flow rate (g/s)

2.0

Two differences:

- Experiment & Numerical simulation
- Pressure drop: hotside & coldside

Cold side

3.0

2.5

Possible reasons

2. Manufacturing deformation

0.215

0.205

0.195

0.185

0.175

0

(mm)

depth

etching (

Channel

▲ Hot-side channel

10

20

Plate number

30

• Metal etching

Subtractive manufacturing Bottom diameter & Top diameter

Diffusion bonding

High temperature & pressure

Deformation rate: 3%-10%

- Heat transfer effectiveness directly impact the 80 K cooling capacity of reverse Brayton refrigerator.
- The refrigerator with proposed PCHE holding 97.9% heat transfer effectiveness can achieve 18 W @ 80 K cooling capacity output.
- For futher higher cooling capacity refrigerator, must upgrad the heat exchanger.

Structure design and experimental platform

Experimental results

Conclusion

(1) For a high-efficiency, lightweight 80 K @ 20 W reverse Brayton refrigerator, we design a cryogenic PCHE with the **compact structure**, **large temperature span**, **small temperature difference**. Conduct **80 K cryogenic experiment** to verify the high-efficiency performance of the proposed PCHE. The heat exchange effectiveness and pressure drop at design point are 97.9 %, 3.2 kPa, 4.4 kPa.

(2) Analysis the thermal-hydraulic performance **sensitivity** of cryogenic PCHE. The mass flow rate and temperature difference are discussed.

(3) **Differences between experiment and numerical simulation** are developed, verifying the importance of experiment on cryogenic heat exchanger design and potential way to improve the experiment.

Thank you

Reporter: Zixin Zhang

Advisor: Professor Liang Chen

Thank the following for their support and guidance in this research: National Natural Science Foundation of China (U21B200139) MOE key Laboratory of cryogenic technology and equipment

2024.07.25