

Visualization of second sound waves based on laser interferometry

Guoliang LI^{1,2}, Shiran BAO^{1,2}, Limin QIU^{1,2}, Jiuce SUN³, Zhengrong OUYANG³

¹ Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China ² The Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Hangzhou 310027, China ³ShanghaiTech University, Shanghai 201210, China

Electronic mail: **srbao@zju.edu.cn**

Contents

Test system design

Interference fringe processing

Summary

- Large-scale scientific facilities **lead and drive the development of disciplines** and **promote major scientific breakthroughs**.
- The superconducting RF resonant cavity is the **core component** of the particle accelerator.
- The superconducting RF resonant cavity **needs to be cooled down to the superconducting critical temperature of the cavity material** to obtain a high acceleration gradient.

HIAF

Photo of TESLA type 9-cell superconducting RF resonant cavity*

Motivation

- Most superconducting cavities are **cooled by saturated superfluid helium**.
- □ Micron-scale defects or contaminants limit maximum acceleration gradients.
- \Box The heat transfer of superfluid helium varies in different states.

The influence of defect diameter on the maximum acceleration gradient*

Motivation

- □ Defect detection methods: array temperature measurement, second sound wave and flow visualization.
- Areas with high **temperature**s are suspected defect point.
- Reverse derivation of the **propagation time** to obtain the location of the defect point.
- Reverse derivation of **normal fluid velocity field** to obtain defect point.

Tajima T, Bhatty A, Canabal A, et al. Full Temperature Mapping System for Standard 1.3 GHz 9-cell Elliptical SRF Cavities[C]. PAC. 2010. Bao S R, Kanai T, Zhang Y, et al. Stereoscopic detection of hot spots in superfluid 4He (He II) for accelerator-cavity diagnosis[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120259.

1 **Motivation**

Comparison of detection methods

- □ This method uses Mach-Zehnder interference optical path.
- \Box The object light sweeps through the cavity surface and interferes with the reference light.
- \blacksquare The interference fringes near the defect point will deform.
- \Box In the experiment, the copper hemisphere simulates the cavity and the heater simulates the defect point.

- **□** This method uses Mach-Zehnder interference optical path.
- \Box The object light sweeps through the cavity surface and interferes with the reference light.
- \blacksquare The interference fringes near the defect point will deform.
- \Box In the experiment, the copper hemisphere simulates the cavity and the heater simulates the defect point.

2 **Test system design**

- \Box Precooling with liquid nitrogen and liquid helium.
- \Box By reducing the pressure on the helium bath, we can obtain superfluid helium.
- \Box Maintain low temperature with high vacuum multilayer insulation.
- \Box At present, the test system is still under construction.

- **The interference images we use to process comes from Lida's experiment.**
- The **laser holographic interferometer** is used in the experiment.
- They use interference fringes with **finite and infinite widths** to capture images.
- \Box A lot of information was obtained from the image.
- \Box The experiment did not obtain quantitative data on the flow and heat transfer of superfluid helium.

- □ Based on the treatment method of interference fringes on the depression of the surface of the object by Munther Gdeisat et al*.
- \square T=1.74 K, heat flux Q=30 W/cm², thermal pulse width t_H =80 µs, shooting time t_D =200, 500, 1000, 1500 μs.
- \Box Taking the processing of the interference fringe at t_{D} =1000 μs as an example.

Interference fringe processing for t_D=1000 μs

T Temperature distributions obtained by processing interference fringes at t_D=200, 500, 1000, 1500 μs.

- \Box The experimental temperature is the average along the path.
- \Box The maximum amplitude is basically consistent.
- \Box The low image quality of 500 microseconds results in significant differences.

Comparison between numerical calculation results and processing results

Summary

- ➢ It is proposed to detect superconducting RF cavity defects by **taking interferometric images**, which is expected to have **high accuracy and low cost**.
- \triangleright We have built a test system including measurement, cryostat, optics, and control.
- ➢ **Temperature distribution was obtained** by processing the interference fringes captured by Lida.
- ➢ Processing results are in good agreement with simulation results.

Prospect

➢ The next step is to **complete the preparation work** for the test system and **verify the feasibility of the method through actual experiments**

Thanks!

srbao@zju.edu.cn