

Zhejiang University

ICEC/ICMC

29th International Cryogenic Engineering Conference International Cryogenic Materials Conference 2024 July 22-26, 2024, Geneva, Switzerland

Experimental investigation on continuous ortho-para hydrogen conversion in hydrogen liquefaction within the range of 40-80 K

Junjie TENG, Xinyu WEI, Shaolong ZHU, Song FANG, Limin QIU, Kai WANG*

E-mails: j_teng20@zju.edu.cn

* kaiwang19@zju.edu.cn

ICEC29-ICMC2024

7/24/2024

Contents

01 Motivations Hydrogen energy

- Hydrogen has been regarded as one of the most promising energy carriers, expected to rise by 4-5% annually in the coming years
- The volumetric energy density of LH₂ can be as high as 2.3 kWh/L

01 Motivations Hydrogen liquefaction

- Hydrogen has two spin isomers, ortho and para hydrogen. The slow rate of spontaneous conversion leads to great **boil-off loss in LH₂ product** if no conversion carried out
- Catalysts filled inside channels to conduct approximate continuous o-p hydrogen conversion

01 Motivations Ortho-para hydrogen conversion

- The conversion heat and the equilibrium concentration vary with temperature
- A complex process of heat transfer-flow-catalytic conversion occurs in the cryogenic hydrogen heat exchanger

Catalysts-filled plate-fin heat exchangers

02 Experimental platform Platform diagram

- Hydrogen flows through two stages of regenerators and LN₂ bathing for precooling and pre-conversion before entering the tested HX
- Helium is refrigerated by three-stage G-M cryocoolers (30-40 K)

02 Experimental platform Platform diagram

- CBYOBOAL T
- Hydrogen flows through two stages of regenerators and LN₂ bathing for precooling and pre-conversion before entering the tested HX
- Helium is refrigerated by three-stage G-M cryocoolers (30-40 K)

Vacuum-insulated tubes

02 Experimental platform Catalysts filling into heat exchangers

One layer of hot fluid and two layers of cold fluids are constructed

Catalysts (2.06 kg) are filled inside channels of tested plate-fin HX to conduct continuous conversion

02 Experimental platform Platform diagram

Inlet conditions of tested HX are adjustable through bypass valves and controller

Thermal-hydraulic-conversion performance of cryogenic hydrogen heat exchangers can be measured

	Testing parameters	Testing conditions
Hot fluid	Inlet temperature of hydrogen	40-298 K
	Inlet pressure of hydrogen	0.1-2.1 MPa
	Flowrate of hydrogen	0-1 g/s (86.4 kg/d)
	Inlet concentration of para-hydrogen	25%-50%
Cold fluid	Inlet temperature of helium	30-298 K
	Inlet pressure of helium	0.1-0.6 MPa
	Flowrate of helium	0-2.5 g/s

Dismountable connectors are utilized to test heat exchanger with different structures

03 Primary results Parameters change during cooling

- Temperature drops gradually for about 3.5 h to reach the lowest temperature
- Outlet concentration of p-hydrogen rises and then levels off as the hydrogen is cooled (almost synchronous with the drop in temperature)

03 Primary results Impact of different flowrates

- The outlet concentration of p-hydrogen drops as the space velocity increases, so does the conversion efficiency
- Friction factor (*f* factor) utilized to characterize the **hydraulic performance** (slight ΔP under low Re)

03 Primary results Temperature change

- As the flowrate ratio of H_2 /He rises, all the inlet and outlet temperatures tend to increase
- The temperature exhibits a rapid decline followed by an abrupt rise over a short period after enlarging the flowrate ratio

04 Conclusions and future work

- A testing platform for cryogenic hydrogen heat exchanger with continuous ortho-para hydrogen conversion is constructed and the thermal-hydraulic-conversion performance is measured and evaluated quantitively
- Precise correlations for cryogenic hydrogen heat exchangers in the future work

Testing platform

Vacuum-insulated tube

Thanks for your attention!

This work is financially supported by the National Key Research and Development Program of China (No. 2021YFB4000700)

7/24/2024