29th International Cryogenic Engineering Conference

Design optimization and heat transfer characteristics of multilayer insulation structures for liquid hydrogen tanks

Hongyu Lv, Liang Chen^{*}, Ze Zhang, Shuangtao Chen, Yu Hou

Reporter: Hongyu Lv

Institution: Xi' an Jiaotong University

Date: 2024.07.24

2 Experimental system and principle

3 **Results and discussions**

4) Conclusions and Suggestions

Research background

Insulation technology

LH₂ is key to achieving large-scaled hydrogen storage

◆ Low heat leakage, highly compact LH₂ tanks

Reducing energy waste and improving safety

Insulation method	Insulation principle
Filling insulation	Reduce conductions by wrapping or packing low thermal conductivity foams, powders, and fibers around the interlayer.
High vacuum insulation	Vacuuming of the interlayer reduces convective heat transfer and gas conductivity.
Vacuum Powder Insulation	A low vacuum degree in the insulation interlayer based on filling insulation is maintained to eliminate gas conduction.
Vacuum multilayer insulation	Radiation shield layers parallel to the cryogenic container are added based on high vacuum insulation to reduce radiation heat transfer.

Spacer layer

Research content

Main contents

Based on the multilayer insulation structure (MLI) performance experimental apparatus, the insulation properties of aluminum foil and glass fiber paper combined under the liquid nitrogen temperature zone are carried out.

Experimental test

Investigate the effects of MLI layer density and layer number on the apparent thermal conductivity and heat flux at different warm boundary temperatures.

Performance analysis

Complete the "Lockheed" semi-empirical equation of flameretardant MLI (aluminum foil + glass fiber paper) based on the experimental results.

Correlation fit

Experimental System Schematic Diagram

Capturing evaporated nitrogen mass flow.

$Q = \dot{m}h_{fg}$

Multilayer insulation structure

 LH_2 tanks multilayer insulation materials must be **flame retardant**.

Reliability demonstration

Vacuum insulation (no insulation material wrapped)

Vacuum pressure (Pa)	experimental pressure (kPa)	Warm boundary temperature (K)	Volume flow rate (L/min)	Heat leakage (W)	Heat flux (W/m²)
3.95×10 ⁻³	96.68	290.81	3.11	11.245	25.134

CINDAS LLC Data:

Heat flux **numerical** calculation:

$$q = \frac{\sigma \left(T_{\rm H}^4 - T_{\rm C}^4\right)}{\frac{1}{\varepsilon_1} + \frac{A_1}{A_2} \left(\frac{1}{\varepsilon_2} - 1\right)} + C_1 \cdot P \cdot \alpha \cdot \left(T_{\rm H} - T_{\rm C}\right)$$
$$= 23.7 \text{ W/m}^2$$

	- `\
Deviation: 1.434 W/m^2	1
	1
Rolativo Error: 5 71%	1
	/

Heat flux of **different experimental systems** for vacuum insulation:

	Warm boundary temperature (K)	Cold boundary temperature (K)	Heat flux (W/m²)
Ref. 1	297.15	77	48.140
Ref. 2	291.7	77	28.280
Ref. 3	283.15	77	26.894
This experiment	290.8	77	25.134

Experimental system validation

Uncertainty analysis

Parameters of main measurement instruments

Parameter	Instrument	Range	Accuracy
Р	Pressure sensor	0-100 kPa (a)	0.05%FS
Т	Lackshore Cernox Thermometer	3.8-325 K	0.1 K
L, D	Meter rule	0-5 m	0.001 m
m	Alicat DB9 Flowmeter	0-5 NLPM 0-500 SCCM	0.1%FS

Apparent thermal conductivity:

Relative error:

The experimental section diameter provides a large error

 Increase the experimental section's diameter

	Experimental section diameter (mm)	Experimental section height (mm)	Uncertainty
Ref. 4	200	400	3.4%
Ref. 5	200	300	3.2%
Ref. 6	152	375	3.31%
Ref. 7	100	450	3.73%
This experiment	350	400	1.34%

2) Experimental system and principle

3 Results and discussions

4) Conclusions and Suggestions

Experimental results

4-wire Resistance

Rehydration at 12 h intervals in the protection section also affects the experimental section.

25

20

Experimental results

Warm boundary

292.7 K

 1.86×10^{-4}

 $W/(m \cdot K)$

The vacuuming officiency is the worst in the middle insulation.	temperature
structure, where the interlayer vacuum pressure is high.	Apparent thermal conductivity

Constant radiation shield layers

302.5 K

 1.89×10^{-4}

 $W/(m \cdot K)$

312.4 K

 1.91×10^{-4}

 $W/(m \cdot K)$

Equation fit

Semi-empirical "Lockheed" Equation

$$q = \frac{C_{\rm s}(n^{*})^{2.63} \left(T_{\rm H} - T_{\rm C}\right) \left(T_{\rm H} + T_{\rm C}\right)}{2(n_{\rm s} + 1)} + \frac{C_{\rm r} \mathcal{E} \left(T_{\rm H}^{4.67} - T_{\rm C}^{4.67}\right)}{n_{\rm s}} + \frac{C_{\rm g} p \left(T_{\rm H}^{0.52} - T_{\rm C}^{0.52}\right)}{n_{\rm s}}$$

 C_s , C_g , and C_r are coefficients for solid conduction, gas conduction, and radiation heat transfer.

Numerical calculation

Constant layer density

- Too few radiation shield layers cannot achieve an excellent insulation effect.
- Due to the low permeability of aluminum foil, too many layers can make vacuuming between MLI layers more difficult.

- The gas and radiation apparent thermal conductivity decreases with increasing layer density.
- The solid apparent thermal conductivity increases with increasing layer density.

2) Experimental system and principle

3 **Results and discussions**

4) Conclusions and Suggestions

Conclusions

The diameter of the experimental section causes a larger error than other parameters, and it is necessary to increase the diameter of the experimental section in the design.

The heat leakage of multilayer insulation structures decreases with the decrease of layer density, but this decreasing tendency is gradually weakened. The heat leakage is positively correlated with the warm boundary temperature.

The fitted equation can better predict the multilayer insulation structures (aluminum foil and glass fiber paper) heat leakage with a maximum deviation of 0.19 W/m² and an average relative deviation of 1.74%.

17 / 17

Reporter: Hongyu Lv

Advisor: Professor Liang Chen

Thank the following for their support and guidance in this research:

 National Key Research and Development Program of China (No. 2022YFB4002900)

> MOE key Laboratory of cryogenic technology and equipment

2024.07.24