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CC manufacturing is now in the transition to meet mass production
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Requirements for stable and reproducible 

operation of multiple production lines.

Opening new factory on April 19, 2023

Quality Assurance (QA) and Quality Control 

(QC) in mass-production become urgent issues.
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Issues of wire production process (ex: IBAD-PLD)
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Issue of Ic characterization:

Time consuming slow measurement.

Some time difficult at low T due to very large Ic



Our method in this study: A new methodology to realize digital model for CC production 
process by data driven approach coupling high throughput measurement and ML
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Combinatorial sample

High throughput

measurement of Ic
(10-20 data/sec) at 

operando condition. 



Multi-turn

Multi-plume
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Our method in this study: A new methodology to realize digital model for CC production 
process by data driven approach coupling high throughput measurement and ML(cont’d)



Our method in this study: A new methodology to model CC production process by 
data driven approach coupling high throughput measurement and ML (cont’d)
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Δ𝐸= σ𝑖 𝐼𝑐𝑖 − ෪𝐼𝑐𝑖
2

The model is trained, i.e., the weight and bias in each neuron are determined to 

minimize the error, DE(=rms), between model output and training data.

𝑥1,𝑖, 𝑥2,𝑖 𝑥3,𝑖…

෪𝐼𝑐𝑖

Deep Neural Network 

Model

𝐼𝑐 = 𝑓(𝑥1,𝑖, 𝑥2,𝑖 𝑥3,𝑖…)



Other model we adopted: Decision tree model
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3. Split node

1. Choose a feature which

minimize RMSE

2. Define split points to 

minimize separates RMSE

4. The average value of all instances

in the leaf will be the prediction

• Low accuracy, sensitive to outliers

• Could be overfitting
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Training data overview
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Data preparation
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z = (x - u) / s

z: standard normal values of x

x: training samples

u: mean

s: standard deviation

Feature Scaling Data training needs

Testing Data

Validation Data

Training Data Train multiple models

To tune hyperparameters

To evaluate model

10%

10%

90%

Standardization

~𝑁(𝜇, 𝛿2)

~𝑁(0,1)
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Evaluation metrics of regression models
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Coefficient of Determination (R2)

ℎ

ℎ𝑖

residual sum of squares:

total sum of squares:

A better model： R2 that is closer to 1.
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Evaluating predictive performance (𝐼𝑐 at 77.3 K, s.f.)

Deep Neural Networks Decision Tree

① Linear regression fit of actual 𝐼𝑐 and pred 𝐼𝑐

② R (Correlation coefficient of actual 𝐼𝑐 and pred 𝐼𝑐)
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Evaluating predictive performance (𝐼𝑐 at 4.2 K, 0.5 T)

① Linear regression fit of actual 𝐼𝑐 and pred 𝐼𝑐

② R (Correlation coefficient of actual 𝐼𝑐 and pred 𝐼𝑐)

DNN shows better performance
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Deep Neural Networks Decision Tree



Increase the number of training data for DNN model
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24,807 data sets for training

(20 % was used for evaluation.)
High throughput measurement allows us to 
collect a large number of data for training!
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Prediction of multilayer deposition in multi-turn system (separate experiment) 
by the trained model
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Prediction of separate multilayer deposition in multi-turn system by the 
trained model
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Summary
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1. A novel approach to develop ML models of IBAD-PLD CC production process, 

which can predict wire performance from input control parameters for deposition, 

has been demonstrated by data driven approach adopting combinatorial long 

samples and high throughput continuous measurements of Ic. 

2. Optimum process condition can now be explored in silico by using the digital 

model.

3. This could be a breakthrough for technological development of mass production of 

CCs to coupe with such requirements as stable and high speed manufacturing of 

high performance CCs as well as cost reduction.
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