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- Electromagnetic approach to superconductivity:

- Nanofabrication has reached a few nanometers scale – ability to engineer artificial 

material, which has enhanced superconducting critical temperature

- Proposals of 1D and 2D superconductors:

Engineered superconductors: historic overview

V. L. Ginzburg, „On surface superconductivity“,  Phys. Lett. 13, 

101 (1964). 

New solution: artificial high polarizability metamaterials

I.I. Smolyaninov and V.N. Smolyaninova, “Metamaterial superconductors”, 

Phys. Rev. B 91, 094501 

D.A. Kirzhnits, E.G. Maksimov, D.I. Khomskii,  “The description of superconductivity in terms of 

dielectric response function”, J. Low Temp. Phys. 10, 79 (1973).

Recent developments in 
metamaterials

Artificial “metamaterials” may be 
created from much larger building 
blocks than atoms, and the 
electromagnetic properties of these 
fundamental building blocks (“meta-
atoms”) may be engineered at will

ε should be negative and small! 
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Al2O3

Engineering small and negative dielectric function ε(q,ω)

Counterintuitive approach:
adding insulator to superconductor to improve superconductivity

Scientific Reports 5,15777 

Epsilon near zero (ENZ) metamaterials: 
Al/Al2O3 core-shell metamaterials
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Hyperbolic metamaterials:
Al/Al2O3 multilayers

Scientific Reports 6, 34140

Next step: test metamaterial approach on superconductors 
with higher Tc → NbTiN hyperbolic metamaterials 



Hyperbolic metamaterial scenario

Effective Coulomb potential:

diverges at:

- Electron-electron interaction is strongly enhanced in 

hyperbolic metamaterials

- The best choice of geometry appears to be metal/dielectric 

layered structure 
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High TC superconductor as 
hyperbolic metamaterial

- BSCCO exhibits 

hyperbolic behaviour 

in the far IR and THz 

ranges

- It looks like nature is 

following the 

metamaterial recipe!



Effect of metamaterial engineering on the Tc and Hc of ultrathin layers of NbTiN

In ultrathin layers of NbTiN Tc depends on film thickness

Appl. Phys. Lett. 107, 122603

NbTiN on MgO

5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
/R

(4
5
 K

)

T (K)

 15 nm

 10 nm

  3 nm

NbTiN films were grown using reactive high-power impulse magnetron sputtering 
(R-HiPIMS)
2 nm < t NbTiN< 3.6 nm
0.8 nm < t AlN< 2 nm

Samples

0 5 10 15 20

12

14

16

18

T
c
 (

K
)

Film thickness (nm)

Tc of 2 m thick film

0.0

5.0x10
-7

1.0x10
-6


 (

o
h

m
-m

)

Apply metamaterial engineering to increase Tc



Tc dependence on number of layers
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The Tc increases with the number of layers, with largest increase of the Tc by 3.6 K (by 32%) for 17 
NbTiN/AlN layers, as expected for a superconducting hyperbolic metamaterial.  Indeed, such a 
material with a large number of building NbTiN/AlN blocks can be considered to be a “metamaterial”. 
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εin plane= -3.8 +7.2i
εout of plane= 5.0
εin plane= -0.51 +4.7i
εout of plane= 1.3 +7i
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Hyperbolic properties of multilayers have been achieved: εin plane< 0; εout of plane> 0

Polarization reflectometry: anisotropy of the dielectric function

J. Appl. Phys. 130, 073901
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Variation of volume fraction of superconductor

The magnitude of the electron-electron interaction depends on an 
anisotropic dielectric function, which, in turn is a function of the 
volume fraction of the metal, n.  In the case of a layered hyperbolic 
metamaterial, the dielectric function dependence on n can be found 
from the Maxwell-Garnett approximation:
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Tc should depend on the volume fraction of metal in the metamaterial.  
To test this assumption, the volume fraction of the dielectric in the 
multilayers was varied, while the thickness of the metal layer remained 
constant, since the Tc of a single layer depends on its thickness. 

Tc of these superconducting hyperbolic metamaterials decreases with 
increasing volume fraction of the metal.  The results are consistent 
with those for aluminium and tin based hyperbolic metamaterials. 

J. Appl. Phys. 130, 073901 



Anomalous behavior of upper critical field in NbTiN-based multilayers

J. Appl. Phys. 130, 073901 
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• While 𝐻𝑐2⊥ of the single NbTiN layer follows the Werthamer–Hefand–Hohenberg (WHH) model, the multilayers 
exhibit a higher 𝐻𝑐2⊥ with an anomalous linear temperature dependence, or a slight positive curvature. 

• Extrapolated 𝐻𝑐∥ 0 ~ 420 𝑘𝑂𝑒

Ultrathin superconducting films are known to exhibit extremely high values of the critical magnetic field Hc.  However, the 
Tc of a single layer of ultrathin films is significantly reduced.  
We have demonstrated the ability to maintain the Tc of a superconducting coating while keeping (or even increasing) its 
critical magnetic field at the same level as for the ultrathin films. This result can lead to many advances in technological 
applications of superconductors.

(NbTiN 3 nm)/(AlN 2nm) x n multilayers 



Conclusions

NbTiN/AlN multilayered metamaterials with ultrathin layers 
o exhibit up to a 32% enhancement of Tc with respect to the Tc of a single ultrathin 

NbTiN layer.  
o This Tc increase can be attributed to an enhanced electron-electron interaction in 

superconducting hyperbolic metamaterials.  
o The critical fields in these multilayers are high and have anomalous linear 

temperature dependence in the perpendicular to the magnetic field direction. 

These results demonstrate that the metamaterial approach to superconductor 
engineering can enable the increase of Hc2 as well as Tc.
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Anisotropy of coherence length

𝟔 𝐧𝐦 < 𝝃∥ < 𝟐𝟓 nm  

𝝃⊥ ≈ 𝟏. 𝟒 nm 

𝜉∥ - in plane coherence length

𝐻𝑐2∥ 𝑇 = ΤΦ0 2 𝜋𝜉∥ 𝑇 𝜉⊥ 𝑇

𝜉⊥ - out of plane coherence length
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