ICEC/ICMC

29th International Cryogenic Engineering Conference International Cryogenic Materials Conference 2024 July 22-26, 2024, Geneva, Switzerland

Review on progress of the homemade 15T LTS solenoidal background magnets using for material test facility and ultra-high magnet fabrication: Magnet Design, Manufacture and Test

<u>Peng Gao</u>, Chao Zhou, Jing gang Qin, Fang Liu, Hua Jun Liu and Huan Jin

Institute of Plasma Physics Chinese Academy of Sciences, Hefei, China

25-July-2024

Contents

01 Int Mate

Introduction Material test facilities of Chinese CRAFT project.

02

Main progress Homemade 15T laboratory LTS magnets.

03

Summary

Outlook of Ultra-high field all-superconducting magnets from China.

Contents

Introduction

Material test facilities of Chinese CRAFT project.

Main progress

01

Summary

Introduction

Special character of Fusion magnet

- Difficult to maintain (complex structure)
- □ Large dimension, heavy weight, precise shape
- **D** Low margin operation
- □ Multi-physical environment
- □ High energy density and stored energy

ASIPP ICEC29/ICMC2024 Thu-Or15-03

Future fusion device: Higher magnetic field, Larger current, Larger stress

Reactor name	ITER	EU-DEMO	CFETR
Max. Field (T)	10.8	~13.5	14.4
Max. Current (A)	68	~80	~96
TF coil (m)	12.6×9.0×0.97	14×10×1.2	21.3×12×1.2
Energy (GJ)	41	109	120

Introduction

ICEC29/ICMC2024 IPP Thu-Or15-03

S.C. material test facilities: Serve the future fusion device

- I. Study and assess material damage mechanical properties
- II. Develop and qualify key technologies of applied superconductivity
- III. Carry out the safety operation studies on S.C. magnet at complex electromagnetic condition
- IV. For planned coils acceptance tests

Introduction

ASIPP ICEC29/ICMC2024 Thu-Or15-03

Facilities list of the CRAFT project: ¥ 2.7 billion ≈ € 0.34 billion (09/2019-06/2025)

1. S.C. Material testing facility	11. CFETR divertor development
2. S.C. Conductor testing facility	12. CFETR divertor testing faculty
3. S.C. magnets testing facility	13. EAST divertor upgrade
4. CFETR CSMC and testing facility	14. ECRH System
5. CFETR HTc coil and testing	15. NNBI system
6. CFETR TF and testing	16. LHCD system
7. Cryogenic testing facility	17. ICRF system
8. Power supply testing facility	18. Blanket testing facility
9. Large Linear plasma testing facility	19. RH testing facility
10. Mater Control facility	 20. VV and installing testing facility

Auxiliary system	1、Power distribution system	3、Cryogenic system	
	2、Cooling water system	4、Power supply system	

Introduction: Material test facilities

Scientific objectives

 To master scientific and the intrinsic physical properties and service behavior of materials for superconducting magnets in complex and extreme environments, and to carry out engineering application research.

Composition and main parameters

- 2.1 SC material performance research platform: 19 T, 2 kA
- 2.2 AC Loss research platform: 0.01-0.2 Hz,1500 kN/m
- 2.3 Structure material performance research platform: 2500 kN
- 2.4 Thermo-hydraulic research platform: 3.8-300 K
- 2.5 NDE technology research platform: 350 kV (X-Ray)
- 2.6 High voltage research platform: 0-100 kV

Introduction: Research platform for S.C. materials

Test platform for S.C. material properties

Research on the current transporting properties of superconducting materials under complex working conditions and acknowledge the evolution mechanism.

Items	Specifications	i c
Background magnetic field	0-19T	
Test temperature margin	4-80K	
Temperature stability	0.03K (4-20K) 0.1K (20-80K)	
Applied axial strain	-1%~1%	
Current capability	0-2000A	

Β.

C.

D.

Ε.

Background field magnet system Α. Critical performance test sample holders

Data acquisition and controlling system

Intelligent helium cycling system

Power supply with high accuracy

- **Background field magnet system:** Higher field, Larger bore
- Multi-functional sample holders: Variable axial strain, transverse mechanical-stress, temperature and magnetic field.

Introduction

19 T all-superconducting magnet with a 70 mm aperture

3rd Step: 01/2024-12/2024

- Assembly the LTS background magnet and the HTS insert coil, examine the target magnetic field and homogeneity of the central magnetic field;
- > Test the stabilities of the 19 T/70 mm all-superconducting magnet with various S.C. sample experiments.

2nd Step: 01/2021-12/2023

- > Optimize and lock the key technologies of construction 15 T LTS solenoidal magnets;
- > Verify the stability and reliability of the process for making 15 T/70 mm LTS solenoidal magnets;
- > Do the S.C. sample experiments with different insert sample test-setups in the 15T/70mm magnets;
- Fabricate a 15 T/150 mm LTS solenoidal magnet and a 5 T/70 mm HTS double-pancake insert coil, test their properties independently.

1st Step: 09/2019-12/2020

- > Complete the construction of the fundamental devices for S.C. magnet fabrication;
- Design and make trail LTS coils to verify the key technologies for building high-field LTS superconducting magnets;
- Fabricate a 15 T/70 mm LTS solenoidal magnet, finish the properties examination.

Introduction

ICEC29/ICMC2024 ASIPP Thu-Or15-03

Challenges for building high-field magnets with a large bore

- ➢ When magnetic field is larger than 9 T @4.2 K, Nb₃Sn is the first choice
 - **Round wire** is easy to wind a coil;
 - **Price** is much lower than YBCO tapes;
 - **Quench** property is better.

BUT

- 1. Process is complex, require heattreatment;
- 2. Extra care is necessary due to the high strain-sensitivity;
- 3. Precise stress control has to be ensured.

Higher magnetic field and larger aperture size produce larger stress on Nb₃Sn coils and higher energy storage

- Over-banding layers are necessary for adding pre-stress and used to limit the deformation of coils due to the Lorenz' force;
- Insulation and Quench protection are significant important due to the possible partial discharge and over-stress during quench.

Contents

Introduction

02

01

Main progress Homemade 15T laboratory LTS magnets.

Summary

Main progress: Flow chart of S.C. magnet fabrication

Coil wound with NbTi/Nb₃Sn/MgB₂ wire

Coil wound with REBCO tape

• Multiple coils \rightarrow reduce cost

- Orthogonal odd-even winding
 → Enhance structure stability
- Single wire winding is used

Electromagnetic simulation & stress analysis & safety margin evaluation

Experiments of the relationship between radial stress distribution

and outer diameter of coils, material types, tension force of prestress coils

Stress evaluation

Main progress: Magnet design

ASIPP Thu-Or15-03

1st 15 T/77mm

306 mm

2nd 15 T/77mm

	1 st 15 T/77 mm	2 nd 15 T/77 mm	1 st 15 T/150 mm	5 T/70 mm HTS
Coil numbers	4	3	3	14 DP
Bore diameter/mm	77	77	150	70
Current /A	116.2	118.6	107.5	220
Target M.F. /T	15	15	15	5
M.F. homogeneity	≤ 0.1% @Ø17 mm×13 mm	≤ 0.1% @Ø20 mm×14 mm	≤ 0.1% @Ø22 mm×16 mm	-0.052%~0.026% @Ø10 mm×10 mm
Max. loadline /%	82.5% on innermost coil	86.2% on inner most coil	85.0% on innermost coil	45.5% on terminal coils
Inductance /H	181.8	109.0	359.4	0.24
Energy storage /MJ	1.2	0.8	2.1	0.0059
Magnet outer diameter /mm	330	306	403	142
Magnet hight /mm	411.4	350	412.3	313

15 T/150mm

16

Infrastructure construction

Constant tension automatic winding machine Max. winding speed: 40 r/min Min. winding tension: 1 kg

Vacuum heat-treatment oven Max. temperature: 1000°C

Temp. stabilization: ± 3°C

Manual and automatic VPI systems for densely wound coil Max. temperature: 160°C Temp. stabilization: ± 3°C

LHe circulation system

Balloon volume : 100 m³ LHe output: 20 L/day Since 2019

First homemade 15 T/ 77mm Nb₃Sn+NbTi hybrid magnet

To 12/2020

<u>Verification of the VPI progress on close-packed coils with thickness >30 mm</u>

Since 2019

on completeness of VPI

To 2023

depend on parameter setting;

Main progress: Manufacture & Test

ASIPP Thu-Or15-03

Verification of the VPI progress on close-packed coils with thickness >30 mm

Since 2019

To 2023

Compact homemade 15 T/77 mm Nb₃Sn+NbTi hybrid magnet

To 2023

Since 2019

Hight of magnet /mn Number of laye

Number of turn:

Central M.F. /T

Current /A Load line (Theori.)

	0 500	1000 1500	2000 2500 3 time (s)	000 3500 4000
	7	7.09 T	7 .31 T	7.35
	6			
E	4 4 3	No	quenc	h.
8	2	load	ino 09	6%
	1	IUaui	iiie 30.	0/0

No quench,

Compact 15 T/77 n	nm magnet	Coil 1	Coil 2	Coil	3
Parameters	Unit	H.P. Nb ₃ Sn	ITER Nb ₃ Sn	H.P. NbTi	ITER NbTi
D _{in} of coil	mm	82.8	137.8	225.0	238.7
D _{out} of coil	mm	117.3	206.6	238.7	296.2
Number of turns		3570	9860	3995	16779
Hight of coil	mm	177.3	245.1	316.4	316.4
Current	А	118.6			
Central M.F.	Т	2.6	4.9	1.5	6.1
Inductance	Н		109.0		
Energy storage	MJ		0.8		

To 2023

← B_{center}

No training quench

Reach to 15T after 2 quenches

18

16

14 E

12 5

10

Compact homemade 15 T/77 mm Nb₃Sn+NbTi hybrid magnet

120

110

Current (A)

80

Since 2019

- High operating parameters: Loadline[~]86.2%, M.F. homogeneity ≤0.1%@ Ø20×14mm
- Impact resistance: more than 10 active quenches and thermal cycling, No properties degradation
- Reliability: running for half year, very stable
- Practicality: Have already submit to S.C. material research platform
- Economical: Cost is reduced by ~1/4 compare to the 1st product

Comparison between similar products globally

Parameters	ASIPP	Oxford instruments	Cryogenic	Jastec
Central M.F.	15.0T	14.0T	14.0T	16.0T
Cold bore dia.	77mm	77mm	70mm	52mm
M.F. homogeneity	≤0.1% @ Ø20mm×14mm	≤0.1% @ Ø10mm ×10mm	≤0.1% @ Ø10mm×10mm	≤0.1% @ Ø10mm×10mm
Coil dimension	340mm × Ø306mm	400mm × Ø280mm	410mm × Ø240mm	390mm × Ø360mm
Operating current	118.6 A	107.0 A	104.0 A	120.5 A

Since 2019

15 T & 150 mm Nb₃Sn+NbTi hybrid magnet

To 2024

Development of the high-field LTS superconducting magnet with a 150mm bore.

Results : 1 training quench, stable center magnetic field reaches to **13.17T**; ——2023.11

No quench, stable center magnetic field reaches to **15.02T** ; --2024.04

Since 2019

19 T & 70 mm Nb₃Sn+NbTi hybrid magnet

To 2024

Development of the high-field LTS + HTS all-superconducting magnet with a 70 mm bore.

Results : No quench, stable center magnetic field reaches to **19.13T**; --2024.05

Main progress

Main progress

Brief review of all-superconducting research since 09/2019

Main progress: New production workshop

Main progress: New production workshop

Test, Assembly, Coil winding, Heat-treatment, VPI and Storage etc.

Contents

01

Introduction Material test facilities of Chinese CRAFT pro

02

Main progress Homemade 15T laboratory LTS magnets

03

Summary

, in the second s

Outlook of Ultra-high field all-superconducting magnets from China.

Summary

- I. To serve the material research of future fusion reactor construction, **15-19T** high-field all-superconducting magnets with bore diameter between **70-150mm** were built at the ASIPP supported by CRAFT project;
- II. Fabrication of high-field S.C. magnets with a large bore is not easy, especially when using Nb₃Sn wire, the quality requirements of insulation, coil winding, stress-control, heat-treatment, VPI, joint process and **quench protection** are significant strict;
- III. After 4.5 years research, two 15 T/77 mm and one 15 T/150 mm LTS background magnets with relative high operating performance are fabricated at the ASIPP, which has already been used for S.C. material test facilities;
- IV.Accompany with a 20 T/17 mm and a 5 T/70 mm HTS double-pancake insert coils, the target magnetic field of **32.4** T and **19** T were successfully reached;
- V. More and more **high-field all-superconducting laboratory magnets** with robust performance are planned in future, magnet optimization is ongoing.

Thanks for your attention

Acknowledgements:

- —The Energy, Materials and Systems group;
- -The Western Superconducting Technologies Co., Ltd;
- —The foundation support from the project of Comprehensive Research Facility for Fusion Technology (CRAFT).

