# ICEC/ICMC

29th International Cryogenic Engineering Conference International Cryogenic Materials Conference 2024 July 22-26, 2024, Geneva, Switzerland

# Transverse stress limits of Bi-2212 Rutherford cables at 11 T, 4.2 K

UTwente: Simon Otten, Sander Wessel, Jeroen Bijlsma, Jorick Leferink, Anna Kario, Herman ten Kate

LBNL: Tengming Shen

NHMFL: Ulf Trociewitz, Daniel Davis, Ernesto Bosque, David Larbalestier





UNIVERSITY OF TWENTE.







24<sup>th</sup> of July 2024

### Motivation: stress in Bi-2212 dipole magnets

- 80 to 105 MPa stress (von Mises) expected in Bi-2212 dipoles
- Experimental data of Bi-2212 cables under transverse load is needed

 $\sigma_{eqv}$  (MPa)



![](_page_1_Figure_5.jpeg)

#### Collaboration for Bi-2212 transverse stress test

![](_page_2_Figure_2.jpeg)

# Wire and cable properties

#### Wire layout

#### **Rutherford cable**

- Bi-2212 in Ag
  - matrix 5
- 0.8 mm diameter
- 55x18 filaments

![](_page_3_Figure_8.jpeg)

0.8

mm

# 17 strands 58 mm twist pitch

- 7.8 mm x 1.4 mm
- Insulated by mullite or alumina sleeve

#### Samples

- Same parameters but from different cable and wire batches
- Changed to alumina insulation for sample 5 and 6

![](_page_3_Figure_15.jpeg)

|          | Cable    | Insulation | Measurement |
|----------|----------|------------|-------------|
| Sample 3 | LBNL1109 | Mullite    | Dec. 2022   |
| Sample 4 | LBNL2002 | Mullite    | June 2023   |
| Sample 5 | LBNL1109 | Alumina    | April 2024  |
| Sample 6 | LBNL1109 | Alumina    | July 2024   |

Images by Zhang et al. (2018) <u>https://doi.org/10.1088/1361-6668/aada2f</u>

### Sample preparation

#### **Heat treatment**

- OPHT at 50 Bar with 1 Bar oxygen
- U-shape for press experiment

![](_page_4_Picture_5.jpeg)

#### Vacuum impregnation

- CTD-101k epoxy resin
- Done on U-shaped sample holder for press

![](_page_4_Picture_9.jpeg)

45 mm section for applying transverse stress

![](_page_5_Picture_0.jpeg)

### Transverse stress setup

- 50 kA superconducting transformer
- 11 T solenoid magnet
- 250 kN press
- 4.2 K helium bath

7

## Initial current-voltage curves

- Measured at T = 4.2 K,  $B_a = 11$  T and 10 MPa of transverse stress
- All cables are stable up to E > 100  $\mu$ V/m without training
- V(I) curves measured on six strands yield consistent  $I_c$  and n values

![](_page_6_Figure_5.jpeg)

## Initial $I_{c}(B_{a})$ curves

- Measured at *T* = 4.2 K and 10 MPa transverse stress
- There is a significant difference between the samples in both I<sub>c</sub> and n

![](_page_7_Figure_4.jpeg)

9

### Comparison with witness strands

- Witness strands of cable 4 and 5 reached nominal performance  $(900-1000 \text{ A/mm}^2)$
- Witness strands of cable 3 and 6 had below nominal performance
- Note: witness strand and cable are not from the same wire batch

![](_page_8_Figure_5.jpeg)

Whole wire/cable critical current

#### Transverse stress test: measurement sequence

- Measurement sequence:
  - 10 MPa
  - 20 MPa
  - 10 MPa
  - 30 MPa
  - 10 MPa
  - 40 MPa
  - etc.
- No reversible effect observed in any sample

**Critical current vs. average transverse stress** 

![](_page_9_Figure_12.jpeg)

### Transverse stress test: sample comparison

- Samples 3, 4, and 6 reach 5% degradation above 120 MPa
- Sample 5 outlier: high  $I_c$ , but more sensitive to transverse stress

![](_page_10_Figure_4.jpeg)

### Conclusion

- Four Bi-2212 Rutherford cables tested in a transverse stress set-up at Twente University.
- Initial current densities in range 250-780 A/mm<sup>2</sup>, and correlate well with witness strand values (4.2 K, 5 T).
- Three out of four cables had less than 5% degradation at 120 MPa average transverse stress.
- All changes in critical current were irreversible.

![](_page_11_Picture_6.jpeg)

![](_page_11_Picture_7.jpeg)

### Discussion slide: the sample holder

- Innovative sample holder by PSI may more closely reproduce CCT magnet conditions.
- Other benefits
  - Reaction and stress test on the same holder
  - Impregnation with pushing block in place, aligned to the sample holder
- We may consider this design for future tests.

#### **Current open sample holder**

![](_page_12_Picture_8.jpeg)

#### PSI "Compression BOX" (M. Daly et al.)

![](_page_12_Figure_10.jpeg)

## Pictures of the samples after OPHT

Sample 3: mullite insulation

![](_page_13_Picture_3.jpeg)

Sample 4: mullite insulation, some stains visible (possible leakage)

![](_page_13_Picture_5.jpeg)

Sample 5: alumina insulation

![](_page_13_Picture_7.jpeg)

Sample 6: alumina insulation

![](_page_13_Picture_9.jpeg)