

Behaviour of superconducting coils inside the sub-cooled water ice.

P. Kováč, M. Búran and J. Kováč Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, Slovakia

Introduction

- The **helium bath** cooling becomes more **expensive** and limited ...
- Therefore, cooling alternatives e.g. **conduction cooling** or using of **another cryogens** (liquid or solid) are needed for future superconducting systems.
- **Liquid hydrogen** or **solid nitrogen** (at ~ **20 K**) have been already tested for superconducting coils.
- But, **liquid H²** needs a special **safety conditions** and **solid N²** is **sublimating** easily, which leads to a lack of cooling efficiency.
- A **question** is: Can be a **sub-cooled H2O possible solution ...?**
- We have performed the measurements of different **superconducting coils** inside the **subcooled H2O** at temperatures **10-80 K** and fields 0-6 T, which can give an **answer**

System used for measurement of coils inside the water ice

Figure (a) - a view of a cryogen-free **12 T magnet** with a inner bore of **100 mm**, in which the cryostat with an experimental vessel with subcooled water ice (**10 – 300 K**) is inserted, see Figure (b).

- The **coil** holder is fixed to the 2nd stage of Sumitomo **RDK-408D2 cryocooler**.
- Small **double-wall** container is fixed to the sample holder and filled by ~ 0.5 l of **deionized water**.
- Cooling of water from room temperature down to **10 K** takes around **10 hours**.
- The **temperature** is monitored by three Pt100 thermometers.

Superconducting coils wound of MgB² , Bi-2223 and Nb3Sn

The coil steel former (a), MgB_2 winding before heat treatment (b) the coil after final heat treatment (c) and coil's view ready for measurements (d).

(d)

Stability and current density of not insulated (NI) MgB coil

The coil has 114 turns of 18-filament **Sam Dong MgB**₂ wire $(0.64 \times 0.80 \text{ mm})$ with very **high packing factor** of **0.91**.

Stability (quenching) of MgB₂ coil in **water ice** is only slightly lower than in LHe. Due to high PF the engineering current densities J_e are similar to winding ones J_w . $J_e = 10^4 \text{ Acm}^{-2}$ was measured for $B = 3.0$ T and 20 K, which is **attractive** for applications.

*Coil's heating of NI MgB*²

Not insulated and high $PF = 0.91 \text{ MgB}_2$ coil is thermally stable at $I \leq I_c(1 \mu \text{Vcm}^{-1})$ and the **heating** was observed at the transport currents $I_{\text{ht}} > I_c$... no water ice inside..

Bi-2223/Ag insulated coil

In comparison to NI MgB₂, R&W **insulated** Bi-2223/Ag coil is thermally stable far above *I***c** and no coil **heating** was observed up to transport currents *I* **~1.25** *I***^c . more ice inside ..**

Nb3Sn insulated coil

Coil has **77 turns** of 1615-filament **IEE Nb3Sn** wire (0.30 x 1.50 mm) insulated with capton foil.

Similarly, **insulated** Nb₃Sn coil is well stable and no **heating** was observed for transport currents *I* **≥1.5** *I***^c . ..Cu stabilized & water ice inside …**

Engineering current densities of measured coils

Not insulated **MgB²** and insulated **Bi-2223/Ag** and **Nb3Sn** coils have different critical parameters and wire design resulting in different $J_e(B,T)$ performance: Practical values of $J_e = 10^4$ Acm⁻² are measured at 15-35 K f or MgB_2 and at 47-70 \textbf{K} for Bi-2223/Ag. J_e = 2.6x10⁴ was measured for all coils at 10 \textbf{K} and B = 4.0 \textbf{T} .

Essential/important water ice properties

• **Specific heat** of water (at 15°C) is **4187 J/kgK** and nearly half for water ice **2108 J/kgK** and decreasing with *T*.

Sublimation and thermal expansion

The **sublimation of SN²** at pressure of 10-9 bar is measured > 20 K, but > 160 K for H₂O ice [\[Fray\].](https://en.wikipedia.org/wiki/Solid_nitrogen#cite_note-fray-12)

 $0,1$ Λ bibliographic review pace Science 57 (2009) 2053–208 0.01 $1E-3$ $1E-4$ pressure [bar] $1E-5$ $1E-6$ N_{2} $1E-7$ $1E-8$ $1E-9$ 50 100 150 200 250 300 $\mathbf{0}$ temperature [K]

When water freezes, it **increases in volume** (**about 9%** for fresh water) [Jacob [& Erk\]](https://en.wikipedia.org/wiki/Solid_nitrogen#cite_note-fray-12).

A local heating of winding (e.g. by over-current) and **easy sublimation** of **SN²** may reduce **thermal contact** with coolant, which is **not a case of H2O ice.**

The expansion by **9% can be dramatic**. Thermal expansion is linearly decreasing with temperature and reaches 0 at \sim 50 K.

Conclusions

- Can be a **sub-cooled H2O used for superconducting coils...?**
- **Stable** and safety behaviour of **MgB² , Bi-2223** and **Nb3Sn** coils was observed inside the **water ice** due to **sufficient** thermal **stability.**
- **Warming** of **outer** turns was observed **close to** the coil's *I***^c (**for **not insulated** coil) and far **above** *I***^c (**for **insulated** ones).
- Water **ice expansion** in double-wall container did not make **any damage** of **insulation**, **thermometers** and installed **Hall probe**.
- In addition, water ice acts as coil's **impregnation**, which can be also easy **reimpregnated**.
- **Consequently, water ice** cooling can be **perspective, cheap and safe** mode applicable for He-free systems (**above 10 K**).

Thanks for your attention!