

Behaviour of superconducting coils inside the sub-cooled water ice.

P. Kováč, M. Búran and J. Kováč Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, Slovakia

Introduction

- The helium bath cooling becomes more expensive and limited ...
- Therefore, cooling alternatives e.g. **conduction cooling** or using of **another cryogens** (liquid or solid) are needed for future superconducting systems.
- Liquid hydrogen or solid nitrogen (at ~ 20 K) have been already tested for superconducting coils.
- But, liquid H_2 needs a special safety conditions and solid N_2 is sublimating easily, which leads to a lack of cooling efficiency.
- A question is: Can be a sub-cooled H₂O possible solution ...?
- We have performed the measurements of different **superconducting coils** inside the **subcooled H₂O** at temperatures **10-80 K** and fields 0-6 T, which can give an **answer**

System used for measurement of coils inside the water ice

Figure (a) - a view of a cryogen-free **12 T magnet** with a inner bore of **100 mm**, in which the cryostat with an experimental vessel with subcooled water ice (10 - 300 K) is inserted, see Figure (b).

- The **coil** holder is fixed to the 2nd stage of Sumitomo **RDK-408D2 cryocooler**.
- Small double-wall container is fixed to the sample holder and filled by ~ 0.5 l of deionized water.
- Cooling of water from room temperature down to **10 K** takes around **10 hours**.
- The **temperature** is monitored by three Pt100 thermometers.

Superconducting coils wound of MgB₂, Bi-2223 and Nb₃Sn

The coil steel former (a), MgB₂ winding before heat treatment (b) the coil after final heat treatment (c) and coil's view ready for measurements (d).

(d)

Stability and current density of not insulated (NI) MgB coil

The coil has **114 turns** of 18-filament **Sam Dong MgB₂** wire (0.64 x 0.80 mm) with very **high packing factor** of **0.91**.

Stability (quenching) of MgB₂ coil in water ice is only slightly lower than in LHe. Due to high PF the engineering current densities J_e are similar to winding ones $J_w J_e = 10^4 \text{ Acm}^{-2}$ was measured for B = 3.0 T and 20 K, which is attractive for applications.

Coil's heating of NI MgB₂

Not insulated and high $PF=0.91 \text{ MgB}_2$ coil is thermally stable at $I < I_c (1 \mu \text{ Vcm}^{-1})$ and the heating was observed at the transport currents $I_{ht} > I_c$...no water ice inside..

Bi-2223/Ag insulated coil

In comparison to NI MgB₂, R&W **insulated** Bi-2223/Ag coil is thermally stable far above I_c and no coil heating was observed up to transport currents $I \sim 1.25 I_c$. more ice inside ...

Nb₃Sn insulated coil

Coil has **77 turns** of 1615-filament **IEE Nb₃Sn** wire (0.30 x 1.50 mm) insulated with capton foil.

Similarly, **insulated** Nb₃Sn coil is well stable and no **heating** was observed for transport currents $I \ge 1.5 I_c$. ..Cu stabilized & water ice inside ...

Engineering current densities of measured coils

Not insulated MgB_2 and insulated Bi-2223/Ag and Nb₃Sn coils have different critical parameters and wire design resulting in different $J_e(B,T)$ performance: Practical values of $J_e = 10^4 \text{ Acm}^{-2}$ are measured at 15-35 K for MgB₂ and at 47-70 K for Bi-2223/Ag. $J_e = 2.6 \times 10^4$ was measured for all coils at 10 K and B = 4.0 T.

Essential/important water ice properties

• **Specific heat** of water (at 15°C) is **4187 J/kgK** and nearly half for water ice **2108 J/kgK** and decreasing with *T*.

Sublimation and thermal expansion

The sublimation of SN_2 at pressure of 10⁻⁹ bar is measured > 20 K, but > 160 K for H₂O ice [Fray].

6.0x10⁻⁵ 0,1 A bibliographic review pace Science 57 (2009) 2053-208 0,01 -o- TE, database 5.0x10⁻⁵ 1E-3 נוופונוומו פאטמואטטון וו/הן 4.0x10⁻⁵ 1E-4 pressure [bar] 3.0x10⁻⁵ 1E-5 2.0x10⁻⁵ 1E-6 N_{2} 1.0x10⁻⁵ 1E-7 0.0 1E-8 Jakob and Erk, 1928 1E-9 -1.0x10 50 100 150 200 250 300 0 50 100 150 200 250 300 temperature [K] temperature [K]

A local heating of winding (e.g. by over-current) and easy sublimation of SN_2 may reduce thermal contact with coolant, which is not a case of H_2O ice.

The expansion by **9% can be dramatic**. Thermal expansion is linearly decreasing with temperature and reaches 0 at ~ 50 K.

When water freezes, it **increases in volume**

(about 9% for fresh water) [Jacob & Erk].

Conclusions

- Can be a **sub-cooled H₂O used for superconducting coils...**?
- Stable and safety behaviour of MgB₂, Bi-2223 and Nb₃Sn coils was observed inside the water ice due to sufficient thermal stability.
- Warming of outer turns was observed close to the coil's I_c (for not insulated coil) and far above I_c (for insulated ones).
- Water **ice expansion** in double-wall container did not make **any damage** of **insulation**, **thermometers** and installed **Hall probe**.
- In addition, water ice acts as coil's **impregnation**, which can be also easy **re-impregnated**.
- Consequently, water ice cooling can be perspective, cheap and safe mode applicable for He-free systems (above 10 K).

Thanks for your attention!