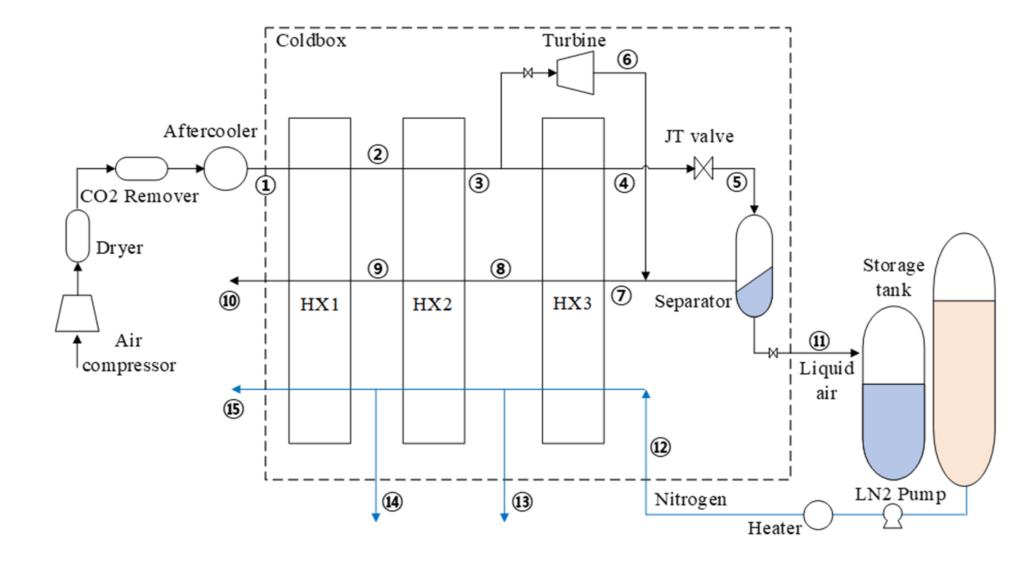

Design of cold box for air liquefaction with capacity of 10 ton/day

Yong-Ju Hong, Sehwan In, Juwon Kim and Junyoung Park

Korea Institute of Machinery & Materials, Yuseong-gu, Daejeon, 34103, Korea

Introduction

- The cold box for the cryogenic liquefaction process of the liquid air energy storage (LAES) device is a facility that produces cryogenic liquid air by introducing gas at high pressure/room temperature.
- Inside the cold box, various devices such as heat exchangers, cryogenic valves, filters, expansion turbines, and phase separators are installed, and each component must be optimally designed for high efficiency operation. Especially, expansion turbines are high speed rotating machines and require components such as filters and expansion joints to prevent mechanical damages.

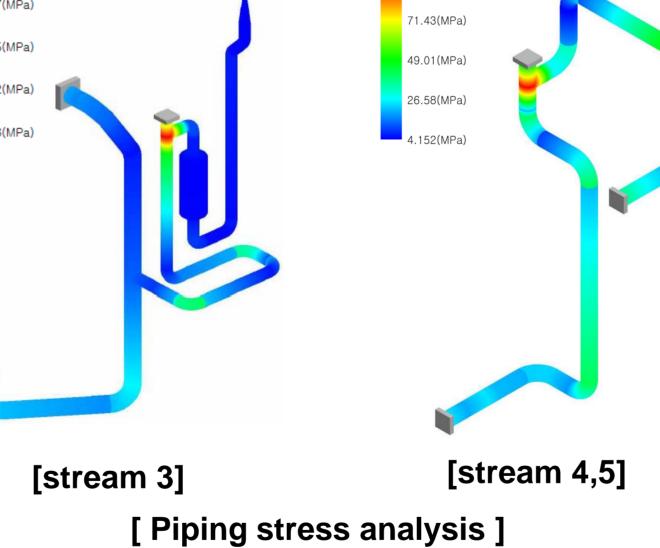


Design of cold box

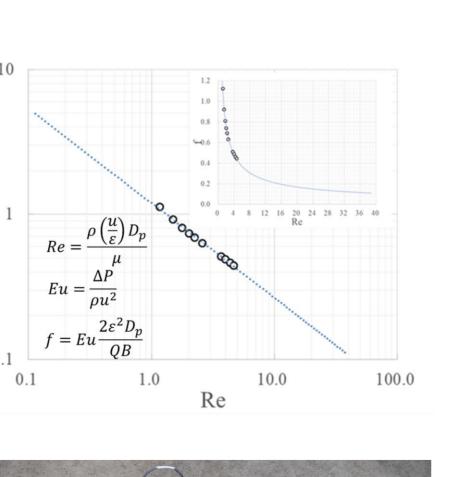
[Layout of liquefaction system]

The various internal components of cold boxes are connected by process piping, and the cold box piping system must have sufficient structural strength to withstand high pressure and minimizes pressure loss of working fluid, as well as considering thermal deformation of the piping system due to cool-down operation.

[Specification of cold box of 10 tons/day]							
Cold box	Specification	Remarks					
Size (mm)	OD 2,500 x H 2,880						
Weight (kg)	Approx. 7,500						
Fluid	Air / Nitrogen						
Press. (MPaG)	4.5 / 0.5 / FV						
Temp. (DegC)	-196 ~ +40						
Test	Pressure & Tightness test	According KGS Code					

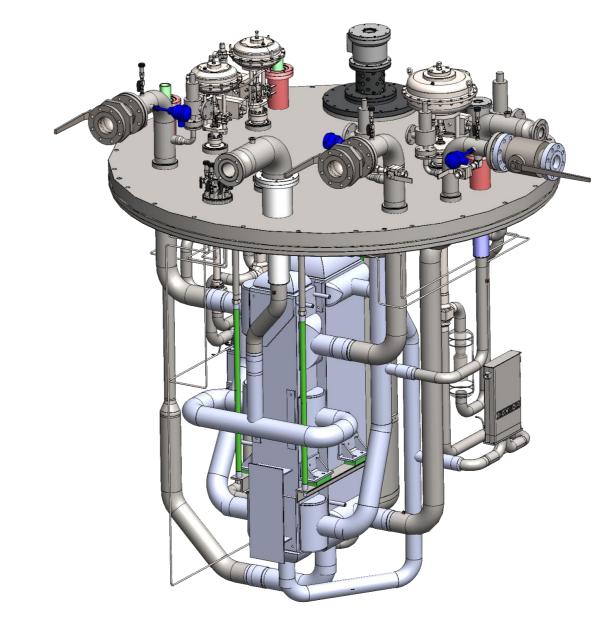

		-		
	ponents	of	ld hoy 1	
	ponenta			

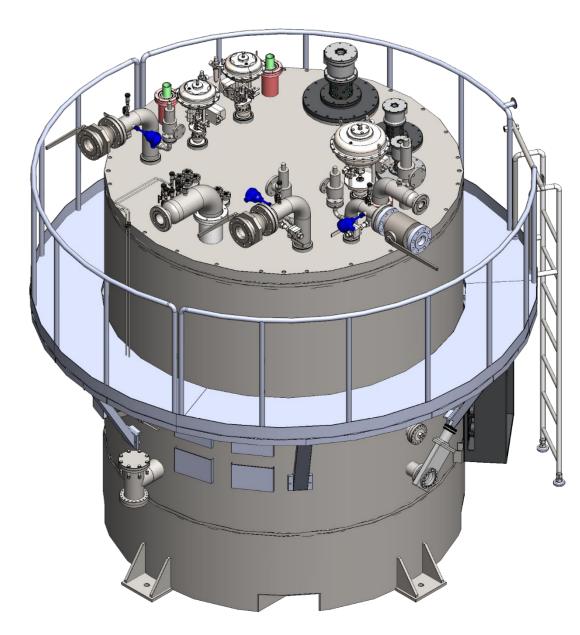
Component	Quantity	Remarks
Heat exchanger	2	BAHX (3 stream)
Turbine filter	1	5 micron filter
Expansion turbine	1	3 stage
Phase separator	1	ID 497 x L1,510
Cryogenic valve	3	
Mass flow meter	2	
Safety valve	4	According KGS Code
Feedthrough	1	

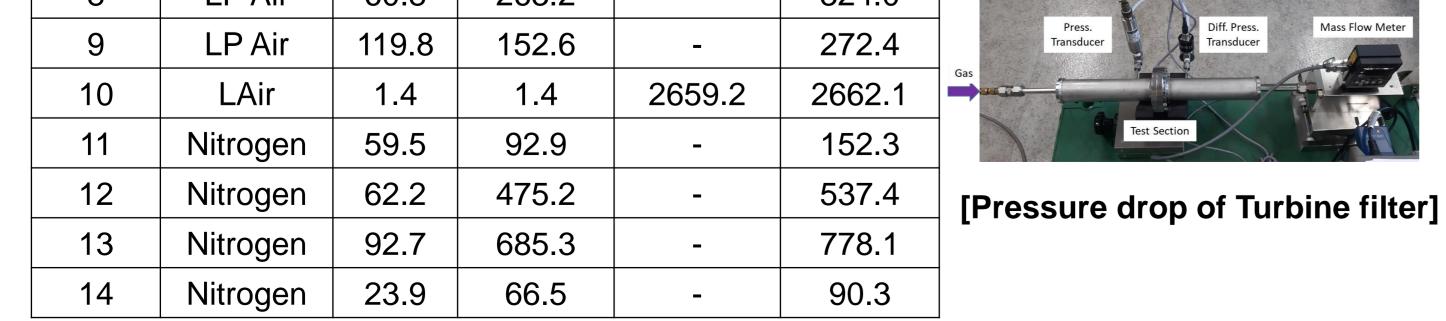

Thermal and structural analysis using CAEPIPE (ASME 31.2 "Processing Piping") were performed to design a process piping system for the cold box. The structural robustness of the pipe as well as the force / moment acting on the nozzle of the heat exchanger and the pipe support were evaluated. And pressure losses in the pipe were evaluated.

[Design of process piping]								[Force a	nd Momen	t acting	on the noz	zle]	
Des		esigned Pipe KGS		46.20(MPa) 93.86(MPa)		93.86(MPa)			Primary load			Secondary load		
r.	Spec.	SCH / thickness (mm)	SCH Min. / thickness (mm)	Calculated Thickness (mm)	34.67(MPa) 23.15(MPa)	71.43(MPa) 49.01(MPa)	Str.	Nozzle	F(N)	M (N-m)	С	F(N)	M (N-m)	С
	3"	40S / 5.49	5S / 1.65	1.483	11.62(MPa)	26.58(MPa)	1	HX1	45.1	5.2	0.00	920.8	195.7	0.0
6	3"	10S / 3.05	5S / 2.11	1.575	0.096(MPa)	4.152(MPa)	2	HX2	98.8	28.9	0.01	833.0	370.7	0.1
1	2"	10S / 2.77	5S / 1.65	1.042			4	HX3	112.9	34.3	0.03	1016.5	314.7	0.2
	4"	10S / 3.05	5S / 2.11	0.225			3, 6	HX3	33.9	9.5	0.02	826.7	287.9	0.0
	4"	100 / 3.05	5S / 2.11	0.225			5, 7, 10	HX3	172.6	116.2	0.06	489.0	349.0	0.1
<u> </u>							9	HX1	21.0	3.0	0.00	3778.5	1484.0	3.0
)	2"	10S / 2.77	5S / 1.65	0.114			11	HX3	42.1	3.0	0.00	1361.7	637.0	0.4
	4"	10S / 3.05	5S / 2.11	0.225			10	HX2	119.5	24.8	0.02	1297.5	222.8	0.1
2	2"	10S / 2.77	5S / 1.65	0.114			12	HX3	38.1	6.7	0.01	228.5	119.9	0.0
3	3"	10S / 3.05	5S / 2.11	0.172	[stream 3]	[stream 4,5]	40	HX1	65.6	12.7	0.01	1219.8	231.8	0.1
1	O" / A"	10S / 2.77	5S / 1.65	0.114	l Pipina stre	ess analysis]	13	HX2	61.1	11.7	0.01	2982.6	578.5	0.4
+	2" / 4"	10S / 3.05	5S / 2.11	0.225	L - 19		14	HX1	21.1	3.0	0.00	2310.7	146.0	0.1

Str.	Snoc	SCH /	SCH Min. /	Calculated
	Spec.	thickness (mm)	thickness (mm)	Thickness (mm)
1	3"	40S / 5.49	5S / 1.65	1.483
3, 6	3"	10S / 3.05	5S / 2.11	1.575
4	2"	10S / 2.77	5S / 1.65	1.042
7	4"	10S / 3.05	5S / 2.11	0.225
9	4"	10S / 3.05	5S / 2.11	0.225
10	2"	10S / 2.77	5S / 1.65	0.114
11	4"	10S / 3.05	5S / 2.11	0.225
12	2"	10S / 2.77	5S / 1.65	0.114
13	3"	10S / 3.05	5S / 2.11	0.172
14	2" / 4"	10S / 2.77	5S / 1.65	0.114
14	<u>ک</u> / 4	10S / 3.05	5S / 2.11	0.225




			Pressur	e drop (Pa)		
Stream	Fluid	Pipe	Minor	Valve, MFM	Total	10
1	HP Air	25.5	175.9	-	201.4	
2	HP Air	30.1	80.1	-	110.2	4 1
3	HP Air	7.9	20.0	-	27.9	
4	HP Air	712.8	304.7	20650.1	21667.6	
5	LP Air	284.9	3822.6	-	4107.5	0.1
6	LP Air	213.7	1075.7	-	1289.4	0
7	LP Air	48.0	112.2	-	160.3	
8	LP Air	60.8	263.2	-	324.0	



Summary

- The detailed design of a cold box for the LAES
- Pressure vessel fabrication, inspection and testing
- Approval from KGS (Korea Gas Safety Corporation) for cold box

Acknowledgment : This work was supported by a grant of the Basic Research Program funded by the Korea Institute of Machinery and Materials (grant number : NK249E).

