Thermodynamic analysis of a high cooling capacity dilution refrigerator under the critical velocity limitation of the dilute phase Shiguang Wu^{a,c*}, Haizheng Dang^{a,b,c,d}

a State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China b Shanghai Research Center for Quantum Sciences, Shanghai 201315, China

c University of Chinese Academy of Sciences, Beijing 100049, China

d Shanghai Boreas Cryogenics Co., Ltd, Shanghai 201802, China

Introduction

- ✤ The rapid development of superconducting quantum computing technology has stimulated the demand for cryogen-free dilution refrigerators with high cooling capacity(>1000 µW@100 mK, >10 $\mu W(a) 10 \text{ mK}$).
- The method of increasing the mass flow rate to obtain a high cooling capacity is limited by the critical velocity of the dilute phase
- ✤ Increasing the flow rate to achieve high cooling capacity while increasing viscous heating significantly degrades refrigeration performance at temperatures ranging from 10 mK to 100 mK.

Highlights

- \succ Equal chemical potential of superfluid ⁴He.
- \succ Real physical properties of ³He and ³He-⁴He mixtures.
- > Comprehensive analysis of viscous heating under the critical velocity.

Result

Dilute phase outer diameter (mn.,

Coling capacity (µW - 4800

ilute phase viscous heating under various velocity

> The viscous heating of the concentrated phase is significantly higher than

 \succ The lower the refrigeration temperature, the larger the concentrated

STATE KEY LABORATORY OF INFRARED PHYSICS SHANGHAI INSTITUTE OF TECHNICAL PHYSICS CHINESE ACADEMY OF SCIENCES

Critical velocity (m/s)	Molar flow rate(µmol/s)
0.0350	184
0.0210	440
0.0122	1024
0.0070	2339
0.0058	3040
0.0050	3762
0.0033	6806
0.0018	15062
	7. 1

 $v_{d,3} = [5 \times 10^{-6} \times ln(\frac{a}{15 \times 10^{-6}})]/d$

Below the critical velocity, there is no friction between ³He and which is the ⁴He atoms, model. vacuum mechanical Under the assumption of this model, ⁴He in the dilute phase satisfies the assumption of equal chemical potential.

$$\begin{cases} Z = 8 \frac{l}{\pi \left[R_2^4 - R_1^4 - \frac{\left(R_2^2 - R_1^2\right)^2}{\ln R_2 / R_1} \right]} \\ \Delta P = (\eta \dot{V}) Z \end{cases}$$
$$Q_{\rm vi} = \Delta P \cdot \dot{V}$$

Conclusions

- \blacklozenge The cooling capacity under a critical velocity of 100 mK and 10 mK refrigeration temperatures has been studied. And the tube diameters at 0-50 $\mu W(a) 10 \text{ mK}$, 0-5000 $\mu W(a) 100 \text{ mK}$ have been discussed.
- \blacklozenge With the increasing tube diameter, the critical velocity decreases, and the molar flow rate increases.
- \blacklozenge Under critical velocity, there is a minimum diameter limit for cooling When refrigeration the capacity. temperature is 10 mK, the concentrated phase diameter needs to be greater than When the refrigeration mm. temperature is 100 mK, the concentrated phase diameter needs to be greater than 0.5 mm.