

中国科学院理化技术研究所 Technical Institute of Physics and Chemistry, CAS

Analysis and Tests of Hybrid Start-up Process of a Space Dilution Refrigeration Unit

Abstract

Hybrid start-up principle and prediction

- Direct dilution : depend on the excess enthalpy H^E with a temperature limit of only 180 mK.
- \succ Osmotic dilution : theoretically reach 0 K, depending on the osmotic enthalpy H^{os} . (need a superleak)
- osmotic dilution.

Zijie Pan¹, Lingjiao Wei^{1*}, Maowen Zheng^{1*}, Jingtao Liang^{1,2}, Shubao Zhao^{1,2}, Ziyao Liu¹, Jiarun Zou^{1,2}, Haowen Guo^{1,2}, Houlei Chen¹ ¹ Key Laboratory of Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100190, China ² University of Chinese Academy of Sciences, Beijing, China

The start-up process of the space dilution refrigeration unit with a high pre-cooling temperature are carefully analyzed and tested. The dilution unit starts successfully and obtains 162 mK at a flow rate of 4 mL/min ³He and 50 mL/min ⁴He. The operating conditions and the phase interface location are carefully discussed for the performance and optimization based on the experimental results.

> The space dilution unit mainly consists of a series of capillary counterflow heat exchangers (HEX) and a three-way mixing chamber (MC).

HEX1: An extractor by accelerating the ⁴He speed higher than the supercritical speed to lock and extract the ³He.(L=1 m, d=40 μ m)

 \rightarrow HEX2/3: The ³He injected is excess which produces 'droplets' in the return pipe to avoid the counter diffusion of ³He.(L=3 m, d= $200/400 \mu m$)

 \succ Two types of the dilution process : direct dilution process ($\Delta \mu = 0$) and osmotic dilution process ($\Delta \mu \neq 0$). The hybrid start-up process combines the two types and takes the direct dilution as the pre-cooling for the

- > The dilution unit successfully starts at 1.2 K and ultimately reaches 162 mK. > The hybrid start-up experimental results are highly consistent with the theoretical predictions.
- \succ The damage to the phase interface caused by insufficient ³He proves evident in the experiment.

Poster id: 75

