

Characterization of localized tensile properties of 316LN -HGH4169-Inconel 718 dissimilar welding joints at cryogenic temperature through a digital image correlation technique

Jingjing Dai^{1,2}, Jijun Xin³, Chuanjun Huang^{1,*}, Wentao Sun^{1,*}, Rong Bao^{1,2}, Yining Huang^{1,2}, Li Shi¹, Wei Wang³, Chengbing Qu¹, Qian Ma¹, and Laifeng Li^{1,2,3} 1 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China 2 School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China 3Songshan Lake Materials Laboratory, Dongguan 523808, PR China

• Regional boundaries of the WZ, the HAZ and the BM of dissimilar welding joints was determined by the macroscopic observation and micro-hardness measurements. Global tensile properties obtained by the DIC technique was proven to be reliable compared with electronic extensometer when applied to dissimilar welding joints at cryogenic temperature (6 K). • Local yield strength ($R_{p0.2}$) of three different zones were investigated at cryogenic temperature (6 K), demonstrating transform of mismatch states of dissimilar welding joints from 300 K to 6 K.

Reference:[1] Xie, L. C., Zhang H. C., Wu S. S., Shen F. Z., Xin J. J., Huang C. J., Jiang M. Y., Huang Z. C., Wang W., Li L. F., Development of two-dimensional temperature field solution method based on the stress-strain response of 316LN stainless steel at cryogenic temperatures. Cryogenics, 2023, 133: 103713.

Abstract

Tab.1 Global tensile properties of dissimilar welds at 300 K and 6 k								
	$R_{\rm p0.2}$ / MPa	R _m / MPa	<i>e / %</i>	Z/%				
DIC	326.5	598.7	23.1	58.2				
someter	333.4	610.2	24.6	30.3				
DIC	867.0	1148.1	10.0	157				
someter	858.1	1155.1	9.5	13.7				

4. Global Tensile Properties by the Optical DIC

The localized optical DIC was drawn using VIC-2D in the WZ, the HAZ and the BM to obtain corresponding curves of tensile engineering stress-engineering strain respectively at 300 K and 6 K based on the identification of regional boundaries in the part. 2.

Fig.5 (a) Schematic diagram of virtual extensometers in localized zones for the localized optical DIC, and local engineering stress-engineering strain curves of the WZ, the HAZ, and the BM of dissimilar welds at (b) 300 K, and (c) 6 K

	300 K			6 K		
	$R_{\rm p0.2}$	R _m	е	$R_{p0.2}$	R _m	е
	MPa	MPa	%	MPa	MPa	%
WZ	378.7	599.5	6.9	813.7	1149.5	13.3
HAZ close to Inconel 718	371.3	598.7	11.9	1070.3	1143.0	2.8
BM of Inconel 718	595.4	600	0.6		1110.5	0.4
HAZ close to 316LN	365.48	599.2	19.5	951.46	1152.6	11.0
BM of 316LN	278.6	598.8	71.4	785.7	1147.8	19.2

Poster id: Wed-Po-2.2-222

was confirmed that the BM of 316LN yielded first before other zones at 300 K instead the global yield of strength obtained by the electronic extensometer.

It could be supposed that the BM of Inconel 718 remained elastic deformation all the time at 6 K meanwhile other zones had yielded and entered the plastic phase.

Tab 2 Local tensile properties of three different zones of dissimilar welds at 300 K and 6 K