
Porous-medium modelling for CFD simulation of perforated plate heat exchangers for cryogenic 

applications
A. Das, T. S. Datta and T. K. Nandi

Cryogenic Engineering Centre, IIT Kharagpur, WB, India - 721302 Paper ID: 276 

A novel porous medium approach using Ansys FluentTM is

presented for modeling perforated plate heat exchangers

(PPHEs). New correlations for the plate-permeability and

Forchheimer coefficient are presented for a Reynolds number

range of 30<Re<500 and a porosity range of 0.2 to 0.27. The

thermal performance of PPHEs is done using the local thermal

equilibrium approach. The model agrees well with the

published experimental data of PPHEs for both inline and

shifted hole arrangements.

Construction-wise, a PPHE is a stack of alternately arranged

high conductivity perforated plates and insulating spacers, as

shown in Fig.1. Being compact (area density as high as 6000

m2/m3), it is used in many applications, including 2K superfluid

helium cryogenic system. The major issue in the CFD

simulation of a PPHE is the inclusion of tiny holes (0.6 mm

diameter) in the computational domain that would result in a

huge cell count. This is mitigated by adopting each perforated

plate as a porous medium. The Darcy-Forchheimer equation[1]

has been utilized to determine the pressure drop through the

heat exchanger. In this method, a pressure gradient as a source

term is used in the momentum equation in which we need

permeability (K) and Forchheimer coefficient (). These have

been obtained from the available pressure drop data on PPHEs.

Thermal modeling is done using local thermal equilibrium

approach. The predictions compare well with the reported

experimental data.

Fig. 2. Inline and shifted hole arrangements

Fig. 3: Pressure drop vs flow rate for 75 Plates

Fig. 4: Pressure drop vs flow rate for 100 Plates

Validation: The proposed model is validated through CFD

simulation (using Ansys-FluentTM )of the PPHEs for which

the experimental data are available [3]. The comparisons are

shown in Figs. 3-7. The results on pressure drop compare

within 20% of the experimental data, while in heat transfer

the accuracy lies between 1 and 4 %. These demonstrate the

accuracy of the proposed model. The curved profiles of

pressure drops for shifted-holes indicate the influence of

inertial loss because of the turbulence in the spacer region,

while in the case of inline-holes, the profile is a straight line.

Assumption: 1. In a porous medium for very low Re (<=10), only viscous 

losses contribute to pressure drop, and inertial losses are neglected.

2. For inline holes the pressure drop in spacer regions is neglected. Since

pores of consecutive plates are in alignment, and spacer thickness is very

small, so the fluid can pass from plate to plate easily.

Equations used:

Darcy Equation used for Re=10:   
P
p

=
Us

K
(1)

Darcy-Forchheimer equation for Re>10:    
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K
+ βρUs

2 (2) for inline 

holes, and for shifted holes 
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Rearranging and comparing with eq.(3), we get  ′ = +
𝑓𝑙𝑜𝑠𝑠

2𝑝
(5)

Using the reported data through numerical predictions on pressure losses in 

various combinations of geometrical and flow conditions [2], the correlations 

for K,  and  ′ are calculated. 

Determination of K,  and 𝛃′ **

1. K of plate: For a given plate geometry at Re=10, K is calculated from eq(1) 

where 𝑃 is obtained from the literature data [2]. A large number of geometry 

is considered and empirical correlation for permeability is obtained as, 

K = 0.031445 ϵ 1.0416 δS
−0.178524 δP

0.3984 d 1.8116 (6)

2.  for Inline holes: For Re>10,  is calculated for various plate geometry 

and different Reynolds number from eq.(2) and correlations are obtained as,
β = (δP)

−1(δS)
0.71073(d)−0.3776(ϵ)−2(ReP)

−0.1071 [for 30<Re<100]  (7)

β = (δP)
−1(δS)

0.82046(d)−0.89184(ϵ)−2(ReP)
−0.6913 [for 100<Re<500]  (8)

3. 𝛃′ for Shifted holes: 

Considering, Pspacers = Pshifted-holes - PInline-holes  (9)

RHS of eq.(9) for a given geometry and flow is computed from ref. [2] and  ′
is calculated from eqs.(4) and (5). The following correlations are obtained.
β′ = 0.3125 (δP)

−1(δS)
−1.04719(d)0.9713(ϵ)−2.6003(ReP)

−0.40677 [For 30<Re<100] (10)

β′ = 0.3226(δP)
−1(δS)

−0.35989(d)0.4424(ϵ)−2.4374(ReP)
−0.02322 [For 100<Re<500] (11)

**The above correlations are valid for 0.5 <
𝛿𝑆

𝛿𝑃
< 2 and 0.5 <

𝛿𝑃

𝑑
< 0.9 and 0.2< 𝜖 <0.27.

Pressure drop per unit length from the  Darcy-Forchheimer equation works as a source term to 

the Navier-Stokes momentum equation, representing momentum loss for flow through 

perforated plates.
𝜕(𝜖𝜌𝑣)

𝜕𝑡
+ 𝛻. 𝜖𝜌 Ԧ𝑣 Ԧ𝑣 = −𝜖𝛻𝑃 + 𝜖𝐵𝑓 + 𝛻 . 𝜖 Ԧ𝜏 + S (12)

Where S= −
𝜇𝑈𝑆

𝐾
+ 𝛽𝜌𝑈𝑆
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Fig. 5: Effectiveness vs mass flow rate for 75 plates

Fig. 6: Effectiveness vs mass flow rate for 75 plates

Fig. 7. Effectiveness vs mass flow rate for 100 plates

Conclusions

From this study, below are the key

points that can be concluded:

1. In porous medium modelling,

the Darcy-Forchheimer equation

can be used to predict pressure

drop efficiently.

2. Forchheimer coefficient can

vary with the Reynolds number

and it is not an intrinsic

property of the plate.

3. Forchheimer contribution to

pressure drop is more than

Darcy part in the Darcy-

Forchheimer equation for

higher Reynolds number.

4. In the Inline hole arrangement,

the spacer has very little

contribution to the pressure

drop. However, in the case of

shifted hole arrangement, the

spacer plays a significant role

in the pressure drop of the heat

exchanger.

5. The LTE model is found to

predict results with reasonably

good accuracy. However, it

could be further improved by

considering LTNE approach.
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Fig. 1. Construction of a PPHE

𝑑= Pore diameter

fLoss= Spacer Pressure loss factor

K = Plate permeability

𝑁𝑃 = Number of Plate-spacer pairs

𝑈𝑆= Superficial velocity

 = Forchheimer coefficient

𝛿𝑃 = Plate thickness

𝛿𝑆 = Spacer thickness
𝜖 = Plate porosity

𝜌 = Fluid density

𝜑𝑣 = Viscous dissipation

𝜇 = Fluid viscosity

Nomenclature

Thermal modelling is done by considering the local thermal equilibrium (LTE)

approach. The Local Thermal Equilibrium (LTE) model assumes a strong

coupling between the solid and fluid phases within a porous media flow,

enabling the estimation of a continuous temperature distribution. The

governing equation for LTE is,

(ρCp)fu
𝜕T

𝜕x
= keff

𝜕2T

𝜕Y2
+ φv (13)

X= Longitudinal direction, Y= Transverse direction

keff = ϵkf + (1 − ϵ)ks (14)
keff = Effective thermal conductivity, kf = fluid thermal conductivity

ks = Solid Thermal conductivity

Thermal Modelling 


