The Influence of Filling Ratio and Number of Turns on the Heat Transfer Performance of Nitrogen Pulsating Heat Pipe

Yaran Shi^{1,2}, Jixiang Yan^{1,2}, Rendong Guo^{1,2}, Dong Xu^{1,*}, Laifeng Li^{1,2,*}

¹ Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

² University of Chinese Academy of Sciences, Beijing, 100049, China

Poster ID: #270

ICEC/ICMC

29th International Cryogenic Engineering Conference International Cryogenic Materials Conference 2024

July 22-26, 2024, Geneva, Switzerland

1. Introduction

- Pulsating heat pipes (PHPs) are promising high-efficiency heat transfer devices with high cost-effectiveness and flexibility.
- The heat transfer performance of PHPs with long distances, which are more valuable for practical applications, requires further investigation under different structural and operational parameters.
- In the present work, the impacts of filling ratios (15%~95%) and number of turns and 12) on the heat transfer performance of nitrogen PHPs, each with a total length of 0.6 m, was experimentally tested.

PHP prototype

Fig. 1 Schematic diagrams and photos of PHP prototypes with 6turn and 12-turn: (1) three-pass junction; (2) copper plate; (3) stainless-steel tube (with an inner diameter of 1 mm and an outer diameter of 1/16 inch)

2. Experiment

The filling ratio (FR) was calculated by

$$\frac{P_0 V_{Buffer\,tank}}{R_g T_{amb}} = \frac{P_f V_{Buffer\,tank}}{R_g T_{amb}} + \frac{P_f V_{filling\,tube}}{R_g T_{filling\,tube}} + m_t$$

$$m_t = \rho_l V_l + \rho_v (V_{PHP} - V_l)$$

$$FR = \frac{V_l}{V_{PHP}} \times 100\%$$

- The heat transfer performance was evaluated using the heat transfer limit Q_{max} (the maximum heat input that the PHP can load) and the effective thermal conductivity K_{off} .
- The K_{eff} was calculated by

$$K_{eff} = \frac{4QL_{a}}{n\pi d_{i}^{2}(T_{e} - T_{c})}$$

Fig. 2 Schematic diagrams of (a) the experimental setup and (b) filling system: (1) buffer tank; (2) GM cryocooler; (3) filling tube; (4) cold head; (5) nitrogen pulsating heat pipe; (6) vacuum chamber; (7) thermal radiation shield; (8) conduction cooling plate; (9) valve panel; (10) pressure transducer P1; (11) pressure transducer P2.

-- 6-turn

─ 12-turn

3. Results and discussion

Temperature and pressure response under

Fig. 3 The temperature and pressure variations of the 6-turn PHP: (a) FR=31.8% and (b) FR=48.8%.

> Effect of the filling ratios

limit of 6-turn PHP. FR (%) Q_{max} (W) 16.4 31.8 48.8 > 40 65.5 94.0 > 40

Table 1 The heat transfer

Fig. 4 Effect of the filling ratio on the effective thermal conductivity of 6-turn PHP.

- The Q_{max} increased with the increasing filling ratio.
- The high FR led to a sharp decrease in K_{eff} .
- The optimal FR range was between 30% ~50%.
- Different heat load ranges corresponded to different optimum FRs within 30%~50%.
- The ΔT was reduced proportionally by doubling the number of turns.
- At Q < 10 W, the 6-turn PHP performeded better.
- As Q increased, degradation occurred earlier in 6-turn PHP.

> Effect of the number of turns

Fig. 5 Effect of the number of turns on (a) the ΔT and (b) K_{eff} .

4. Conclusion

- The heat transfer performance of the nitrogen PHP was significantly affected by the FR. The Q_{max} could be enhanced by increasing the FR. However, the high FR led to a sharp decrease in K_{eff} . The recommended FR was between 30% and 50%.
- For the 6-turn PHP, the best heat transfer performance was achieved at a FR of 31.8% at a heat load less than 15 W whereas the optimal FR was 48.8% at a heat load exceeding 15 W. The maximum K_{eff} of 138.4 kW/(m·K) and 136 kW/(m·K) were achieved at FRs of 31.8% and 48.8%, respectively.
- The ΔT between the evaporator and condenser was significantly reduced and the maximum K_{eff} was increased by increasing the number of turns from 6 to 12. Notably, at higher heat loads, the 12-turn PHP exhibited better heat transfer performance compared to the 6-turn PHP, achieving a maximum effective thermal conductivity of 151.8 kW/(m·K) at a heat load of 15 W.