

Abstract: Cryopump finds application in space research, fusion research, and LIGO etc. To achieve high vacuum in the large volume vessels like ITER, helium cooled cryopumps are used. A temperature of ~ 20 K is required for pumping nitrogen gas by condensation and ~ 80 K temperature for pumping by adsorption on the activated charcoal coated surfaces. Various 80 K sorption pumps (AGASTYA) are developed indigenously at Institute for Plasma Research (IPR) and finding applications for pumping water vapour in the thermo-vac chamber of SAC-ISRO and SST-1 has the vacuum vessel of $\sim 23 \text{ m}^3$ volume that encloses Plasma Facing Components (PFCs) of surface area $\sim 40 \text{ m}^2$ exposed to plasma. During baking of PFCs, major evolved gas is water vapour, a customized AGASTYA 500 was designed, fabricated, tested and installed on the radial port of the SST-1. The design was analyzed for the temperature of the different components (PFCs) of surface area $\sim 40 \text{ m}^2$ exposed to plasma. During baking of PFCs, major evolved gas is water vapour, a customized AGASTYA 500 was designed, fabricated, tested and installed on the radial port of the SST-1. The design was analyzed for the temperature of the different components (PFCs) of surface area $\sim 40 \text{ m}^2$ exposed to plasma. During baking of PFCs, major evolved gas is water vapour, a customized AGASTYA 500 was designed, fabricated, tested and installed on the radial port of the SST-1. The design was analyzed for the temperature of the different components (PFCs) are customized and installed on the radial port of the second sec using ANSYSTM and also, the pumping speed for water vapour and nitrogen gas was found to be ~ 26000 litre/sec, respectively. Integration of the AGASTYA with the existing vacuum system of SST-1 resulted in reduction of the partial pressure of water vapour from 4.4×10^{-6} to 1.3×10^{-7} mbar during baking of the PFCs at 230 °C temperature. The design, thermo-structural analysis, experience of, testing and operations will be discussed systematically to show the applicability of the AGASTYA pump in large volume vacuum chambers.

Development, Testing and Application of the Indigenously Built 80 K Sorption Cryopump

Vishal Gupta^{1*}, Samiran S. Mukherjee¹, Avijit Dewasi¹, Jyoti Shankar Mishra¹, Paresh Panchal¹, Vipul L. Tanna^{1,2}, Yuvakiran Paravastu¹, Dilip C. Raval¹, Ziauddin Khan^{1,2}, Raju Daniel^{1,2}, Siju George¹, Atul Garg¹, L N Srikanth¹, Kalpesh R. Dhanani¹, Rohan Dutta¹, Abhinav B. Desai¹, Hemang S. Agravat¹, Ranjana Gangradey¹

¹Institute for Plasma Research, Bhat, Gandhinagar-382428, India ²Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India

tional Cryogenic Material Conference 2024

POSTER ID: 499