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Abstract

Multilayer insulation (MLI) has a critical role in controlling the parasitic heat-in-leak through radiation. It consists of alternate layers of reflective aluminized
mylar, separated by low thermal conductivity spacers. The thermal emissivity of the reflective layer plays a critical role in minimizing the radiative heat transfer
through its layers. However, the formation of a native oxide layer on the aluminized surface can affect the emittance of the reflective layer. The exact
microstructure and elemental composition of the native aluminium oxide is highly uncertain, and it 1Is commonly identified as an amorphous combination of
different oxides and hydroxides. Due to the exposure of atmospheric oxygen and moisture, native oxide layer can vary in nature and thickness, making It
essential to characterize the material and measure the emittance of the reflective surface before its application in cryogenic systems. This work aims to establish
the approach for investigating the structural and functional quality of MLI before its use in cryogenic component.
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