

Thermodynamic modelling of the warm-up of cryogenic tank at low fill levels for LH2 storage

- heat gain at moderate-to-low fill levels.
- Investigate self-pressurisation as a method to reduce heel boil-off.

James Wang¹, Dr Tom Hughes², Prof. Paul Webley¹

¹Faculty of Biological and Chemical Engineering Monash University, ²Faculty of Civil Engineering Monash University

ICEC/ICMC

Cryogenic Applications: Hydrogen & LNG Systems ID: 454

Figure 5: Heat transfer within unpressurised perlite LH2 tank

Insulation thickness (m)	Inner wall thickness (mm)	Inner wall material	Steady State Heat Transfer (kW)
0.75	65	304 Stainless Steel	6.74
0.75	65		49.9
0.5	1		78.7

Figure 6: Dimensionless cumulative heat transfer for all tanks considered at 5% fill.