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Introduction

Rationale: During their return voyage, LNG carriers retain a “small” quantity of liquid
(heel) in one or all tanks, to mitigate tank warm-up over the duration of the voyage.
This heel can be sprayed onto the tank walls prior to arrival, partially cooling the
tanks and reducing excessive boil-off during loading.

Simple lumped mass models (vapour, liquid, interface) have been demonstrated to
predict rate of self-pressurisation with 2 tuning parameters. However, these models
are unable to directly predict vapour thermal stratification and subsequently,
cumulative heat gain in the tank.

Aims:

* Develop a lumped-sum analytical model to estimate vapour stratification and tank
heat gain at moderate-to-low fill levels.

* Understand the differences between heel management in existing LNG
membrane-type tanks and LH2 Type-B (double walled) storage tanks.

* Investigate self-pressurisation as a method to reduce heel boil-off.

Problem Overview
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Figure 1

Considering a tank at ~100% fill, immediately after unloading. Prior to unloading,
tank heat transfer is in a quasi-steady state.
Defining residual heat as:

t. - .
Uresidual = fo (Qenvironmental — @fuid) dt.

The maximum quantity of heel required under continuous spraying of the inner
wall:

_ Qsteady state*Cp
mheel,spray — htg

Defining dimensionless environmental heat gain as:

t -
0. — fo Qenvironmentaldt
1

Q steady state*t

Defining dimensionless environmental heat gain as:
32 — Uresidual

t -
fo Qenvironmentaldt

Methods

Outer Wall

Vapour sublayer
Insulation "R el

/

Vapour Temperature
Profile

Saturation Temperature

Inner Wall

Figure 2

Assuming a linear vapour temperature profile, ullage is divided into ‘n’
sublayers of volume V;". Thermal gradient can then be solved by minimising

the mass and energy residuals:
n n
Am, = my — z Vipy,i AU, = Uy — z Vipy, Uy,
=1 =1

Convergence criteria set to 0.01 for normalised residuals. Two empirical tuning
parameters C, and C, are required:
. 4T

. . (Tsa _T )
Avs = Cy V 4y s = Czkl > Ezltpl [3]

Where t, is time since pressurisation, a; Is thermal diffusivity, j—i IS vapour
thermal gradient and k is thermal conductivity (all in S| units).

Tuning & Validation
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(Fig. 3) Vapour temperatures in pressurised 4.9 m3 spheroidal LH2 tank [1]
and (Fig. 4) for unpressurised membrane-type prismatic tank for LNG [2].
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Heat Transfer within Tank
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Cumulative Tank Heat Gain
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Considering 3 cases for 40,000 m? storage tanks at 5 % fill:
Case Insulation Type  |Insulation |Inner wall Inner wall Steady State
thickness  |thickness (mm) |material Heat Transfer
(m) (kW)
Spherical, LH2 Perlite (100 mTorr) |0.75 65 304 Stainless |6.74
Spherical, LH2 PUF (non-vacuum) |0.75 65 Steel 49.9
Prismatic membrane, LNG | PUF (non-vacuum) |0.5 1 78.7

Key Observations

* For the LH2 insulated tanks over 3 weeks, 3.6 % and 8.7 % decrease in environmental-to-outer shell for perlite and
polyurethane foam (PUF) respectively.
 |n comparison, estimated 30 % decrease in environmental-to-outer shell heat transfer for LNG tank over 3 weeks.
Comparatively lower portion of cumulative heat transferred retained within tank for LNG tank.
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Conclusion

* New approach proposed for modelling self-pressurisation and vapour stratification using lumped mass methods, using
two empirical tuning parameters.
 Self-pressurisation predicted to result in additional net heat gain. However, this may be offset by significant boil-off

reductions.

 Significantly differences in heat transfer evolution between LNG and LH2 cases, primarily due to differences in
thermophysical properties of steel at ~20 and ~110K and inner wall thickness.
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