

Numerical modelling of tank motions on heat and mass transfer in liquid hydrogen storage

Introduction

Rationale: In cryogenic fuel tanks, sufficient vapour pressure must be maintained to enable fuel flow. Effect of sloshing on heat transfer between liquid and vapour phases is generally observed to result in a pressure drop in stratified tanks – highly dependent on fill level & excitation.

Aims: Model and extract heat transfer correlations for planar stable and chaotic sloshing in spherical cryogenic tanks, using ANSYS FLUENT.

Experimental Data (Moran et al, 1994)

Liquid hydrogen sloshing tests conducted at NASA's Lewis Research Centre:

- Spherical tank (R = 0.75m, $V = 1.75 \text{ m}^3$).
- Lateral sloshing only.
- Data (sufficient for model comparison) provided for two tests (see below).

fill [1], assuming inviscid fluid. Frequency ratio = f/f_1 .

Overview of sloshing experiments [1]						
Case #	Fill	Sloshing "mode"	Sloshing frequency	Sloshing amplitude		
869	64 %	1 st mode planar (stable)	0.95 Hz	±0.0127 m Linearly increased over 3		
870	67 %	Chaotic	0.74 Hz	±0.0381 m Linearly increased over 1		

Model Overview	Solution Methods
 RANS turbulence modelling Lee Model for interfacial mass tra Structured mesh (~890K cells) Adiabatic wall conditions Liquid treated as incompressible Vapour treated as ideal gas 	 PISO for velocity-pr Second order upw terms Convergence criteri for all others. Fixed step size of 5

Initial Conditions

Initial gauge pressure of 143 kPaG. Initial liquid temperature approximated as semi-infinite solid:

 $T_{l}(x) = T_{\text{sat,p1}} - (T_{\text{sat,p1}} - T_{l,i}) \operatorname{erf}\left(\frac{x}{2}(\alpha_{l}t_{ramp})^{-0.5}\right)$ $T_{\text{sat,p1}} = 23.6 \text{ K}, T_{\text{l},i} = 20.223 \text{ K}, \alpha_{\text{l}} = 1.247 \cdot 10^{-7}, t_{ramp} = 28s$ James Wang¹, Dr Tom Hughes², Prof. Paul Webley¹

¹Faculty of Biological and Chemical Engineering Monash University, ²Faculty of Civil Engineering Monash University

Vapour-Interface & Interface-Liquid Heat Transfer $Nu = \frac{\dot{q}}{k} \frac{dx}{dT_{t=0}}$ Nusselt number defined as:

Ludwig et al. (2013) [2] derived the following empirical correlation for interface-liquid heat transfer based on 9 data points in the literature:

$$Nu_{int-liq} = \left(\frac{Re_s}{Re_{s,c}}\right)^{0.6}$$

 $f_1 = 1^{st}$ mode nat. frequency, b = wave amplitude, v = kin. viscosity, $\varepsilon_1 =$ sloshing eigenvalue $f_{1.870} = 0.772 \text{ Hz}, f_{1.869} = 0.785 \text{ Hz} [1], b_{870} = 0.45 \text{ m}, b_{869} = 0.045 \text{ m} [2]$

Based on the assumptions:

- Vapour can be treated as an ideal gas.

Estimated Nusselt Numbers [2]

area (right) for Case 870.

Key Observations

- fluctuations corresponding to sloshing half-periods.
- pressure decay.

- existing correlations.

Future Modelling Work

Acknowledgements: The author acknowledges financial support from the Australian Govt and the Woodside Monash Energy Partnership in the completion of this work.

ICEC/ICMC

Cryogenic Applications: Hydrogen & LNG Systems ID: 455

Extracting Heat and Mass Transfer

Pr^{1/3} Where: $Re_{s,c} = 4 \cdot 10^3 \pm 20\%$, $Re_s = \frac{2\pi f b^2}{10}$

• Initial liquid temperature profile can be approximated using an semi-infinite solid analogy. • Vapour-interface heat transfer is negligible $(\dot{Q}_{int-lig} = \dot{m}_{cond} h_{fg})$.

_{wig} [2]	Nu _{model,avg, 5–10s}		Nu _{model,max}	
Int — liq	Vap — int	Int — liq	Vap — int	Int — liq
7.1 – 8.1	236.4	12.1	329.4	17.1
157.2 – 180.5	4,209.1	183.9	7,993.2	343.4

Figure 6: Nusselt number for vapour-interface (left) interface-liquid (centre) heat transfer, and interfacial surface

Extracted Nu generally higher than predicted by empirical correlation and appears highly time-dependent, with

• Increase in interfacial surface area (due to splashing) predicted to be large contributor to pressure drop.

Vapour-interface heat transfer and sensible heat transfer predicted to be non-negligible contributor to overall

Conclusion

• VOF method appears able to capture pressure decay during "stable planar" sloshing – however, pressure decay over-predicted in "chaotic" sloshing case.

• Vapour-interface and interface-liquid heat transfer oscillations highly temporal.

• Extracted Nusselt number for interface-liquid heat transfer generally higher than that predicted by

• Further investigation of lateral sloshing at different amplitudes and excitation frequencies. • Investigating contribution of tank wall thermal mass and initial temperature.