

Numerical Simulation of the Protective Effect of Air Walls on Liquid Hydrogen Leakage Yanwei LIANG^{1,2,3,4*}, Yongfeng QU⁴, Nan PENG^{1,2,3}, Jean-Michel GHIDAGLIA^{4,5}, Liqiang LIU^{1,2,3}

ID: 299

¹ Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China ² University of Chinese Academy of Sciences, Beijing, China ³ Key Laboratory of Cryogenic Science and Technology, Beijing, China ⁴ Centre Borelli, University of Paris-Saclay, Gif-sur-Yvette, France ⁵ Modeling, Simulation & Data Analysis, UM6P, Benguerir, Morocco *E-mail: liangyanwei18@mails.ucas.ac.cn

normale ______ universite

International Cryogenic Materials Conference 2024 July 22-26, 2024, Geneva, Switzerland

act of different air velocities				
n/s) 2.5 3.0	0.	H2_Mole_Fraction).0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.2		
50s U	V3 10s H	V3 20s H	V3 50s H	
50s U	V8 10s H	V8 20s H	V8 50s H	
V15 50s U	V15 10s H	V15 20s H	V15 50s H	

Here, V3 represents the velocity of the air wall 3m/s, 0s represents that the LH2 has been released for 0s, U represents the velocity distribution (U Magnitude), and H represents the hydrogen concentration distribution (H2_Mole_Fraction). The letters and numbers in subsequent pictures have

of different air velocities when g the air wall during LH2 release					
n/s) 2.5 3.0		H2_Mole_Fraction 0.0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.2			
10s U	V3 50s U	V3 10s H	V3 50s H		
10s U	V8 50s U	V8 10s H	V8 50s H		
V15 10s U	V15 50s U	V15 10s H	V15 50s H		

Conclusion

> Compared to cofferdam, air walls are significantly safer. \triangleright The protective effect: it increases the upward velocity and enhances convection, thereby increasing the dissipation rate. \triangleright The greater the air velocity, the more effective the protection. \succ The air wall does not need to be turned on continuously. It can be turned on at the moment of leakage, and the protection effect is equally good.