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Topology optimization of cryogenic heat transfer in 1D stressed rods for large liquid hydrogen tanks
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Abstract

The heat leakage of cryogenic equipment mainly comes from multilayer insulation and solid heat conduction. However, optimizing solid heat transfer has not been extensively studied.
Utilizing the properties of materials that exhibit increased strength and reduced thermal conductivity at cryogenic temperatures, the shape of a 1D support was optimized through topology optimization.
The shape, temperature profile, and heat transfer coefficient of the support were analyzed, as well as the impact of different weight ratios of liquid hydrogen on heat leakage.
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Elements heat transfer coefficient: K'g(z) = k(i) ;

v . Results

Thermal resistance: Rg(1) = 0

Calculate the temperature profile using Eq. (7) [«
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