Electrical Capacitance Volume Sensor for Microgravity Mass Gauging:

Advancements in Sensor Calibration for Microgravity Fluid Configurations and Propellant Management Devices

Presenting: Matt Charleston

Authors: Matt Charleston, Shah Chowdhury, Benjamin Straiton, Qussai Marashdeh, Fernando Teixeira

Electrical Capacitance Volume Sensing

- 3D, Non-Invasive Measurement Technology
- Array of electrodes arranged around a volume
- Electrodes are excited one at a time and the inter-electrode capacitances are measured
 - 12 electrodes 66 measurements
- The volume fraction is then reconstructed from the measurements
- Used for Cryogenic LH₂, LOX or Monopropellants

Brief History of Propellant Mass Gauging

- Bookkeeping and level sensing techniques can only be used during engine burns and require settled conditions.
- PVT can be used in low-gravity but is slow and has complex calibrations.

Whole Tank Mass Gauge Techniques

- Radio Frequency
- X-Ray
- Acoustic Modal
- Optical
- ECVS

Why ECVS is needed...

- ECVS is a whole-volume sensor
- Mass gauging of arbitrary spatial distributions
 - Sloshing fluid
 - Settled fluid
 - Microgravity surface tension dominated fluid configurations
- Leak detection
- Real-time measurement
 - Maneuver calculations
 - Fuel mass flow rate & custody transfer

Information of Fluid Position and Mass

- Current methods:
 - model based assume a settled fluid distribution
 - Lose accuracy in dynamic situations
 - Cannot handle metastable situations
- ECVS
 - 66 Independent Measurements
 - Fluid Position Agnostic
 - Real time data collection
 - Dynamic, Settled Gravity, and Settled Microgravity fluid distributions
 - All stages of a space mission

Metastable Distributions

Sensor Design

 $\times 10^{\circ}$

-4

20

- Previously tested two designs and determined that Dodecahedron design performs well
- High symmetry = low signal change when constant mass of fluid moves around
- Adjacent Plates have localized sensitive regions
- Many non-adjacent channels are needed for accurate and stable gauging

Design 1:

Octahedron

Sensor Construction

- Formed copper plates
- 3-Segment clamp-on design with 3D printed Shells
- Easy Disassembly for Troubleshooting
- Mineral Oil Fluid
 - E = 2.16
 - Similar to cryogens

Experimental Test Cases

• Balloon

Experimental Test Cases

• Gentle Slosh

Vigorous Slosh

Simulation Test Cases

- Stratified Gap-Center
- Stratified Plate-Center
- Annular & offset
- Core Annular & offset

- Rotations of each of the above so that different plates are on the bottom
- Total: 11,280 data points

Machine Learning Algorithm – Channel Types –

- 3 Symmetry groups in the Dodecahedron
 - Adjacent Channels
 - Cross Channels
 - Opposite Channels
- Due to rotational symmetry, Adjacent channel types can be averaged together
- Reduces 66 measurements into 3
 - Easier to train!

Cross

Opposite

Machine Learning

Results on Trained Data

Results on Untrained Data

Non-Metallic Vane PMDs

VTRE missions do not affect this method!

IAGING

Limits of the Current Investigation

Differences between experiment and simulation and non-repeatability between experiments limits the maximum accuracy we can obtain to around 3%. This can be improved!

Next Steps

- Metallic Vane Investigation
 - Data is already collected
 - ML algorithm needs to be developed

- Improve repeatability of DAS and experiment
- Improve relation between experiment and simulation
- Test metallic tanks & cryogenic fluids
- Test microgravity fluid configurations in simulation
- Validate sensor in microgravity operation

Cryogenic Feasibility

• Flowmeter with same measurement technology tested and working on LH₂! <u>Two-Phase Mass Flow Rate Results</u>

Questions?

Matt Charleston

Sr. Product Development Engineer <u>m.charleston@tech4imaging.com</u> Qussai Marashdeh, PhD, CEO <u>marashdeh@tech4imaging.com</u> www.tech4imaging.com

